List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1562490/publications.pdf Version: 2024-02-01

SHULF FENC

#	Article	IF	CITATIONS
1	Calibration and rectification of bi-telecentric lenses in Scheimpflug condition. Optics and Lasers in Engineering, 2022, 149, 106793.	3.8	10
2	Composite fringe projection deep learning profilometry for single-shot absolute 3D shape measurement. Optics Express, 2022, 30, 3424.	3.4	38
3	Deep learning in optical metrology: a review. Light: Science and Applications, 2022, 11, 39.	16.6	214
4	Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement. Opto-Electronic Advances, 2022, 5, 210021-210021.	13.3	63
5	Microscopic fringe projection profilometry systems in Scheimpflug condition and performance comparison. Surface Topography: Metrology and Properties, 2022, 10, 024004.	1.6	5
6	High-resolution real-time 360â~ 3D surface defect inspection with fringe projection profilometry. Optics and Lasers in Engineering, 2021, 137, 106382.	3.8	35
7	Single-shot 3D shape measurement using an end-to-end stereo matching network for speckle projection profilometry. Optics Express, 2021, 29, 13388.	3.4	39
8	Generalized framework for non-sinusoidal fringe analysis using deep learning. Photonics Research, 2021, 9, 1084.	7.0	69
9	Calibration of fringe projection profilometry: A comparative review. Optics and Lasers in Engineering, 2021, 143, 106622.	3.8	130
10	Deep learning-based single-shot spatial frequency multiplexing composite fringe projection profilometry. , 2021, , .		0
11	High-accuracy real-time omnidirectional 3D scanning and inspection system. , 2021, , .		0
12	Calibration method for monocular 3D imaging systems based on reference planes. , 2021, , .		0
13	Fast and high-precision 3D face scanning system based on infrared fringe projection. , 2021, , .		0
14	Deep-learning-based fringe-pattern analysis with uncertainty estimation. Optica, 2021, 8, 1507.	9.3	48
15	Stereo rectification of Scheimpflug telecentric lenses. , 2021, , .		0
16	Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement. APL Photonics, 2020, 5, .	5.7	146
17	High-speed high dynamic range 3D shape measurement based on deep learning. Optics and Lasers in Engineering, 2020, 134, 106245.	3.8	51
18	Microscopic fringe projection profilometry: A review. Optics and Lasers in Engineering, 2020, 135, 106192.	3.8	163

#	Article	IF	CITATIONS
19	Composite deep learning framework for absolute 3D shape measurement based on single fringe phase retrieval and speckle correlation. JPhys Photonics, 2020, 2, 045009.	4.6	9
20	Real-time high dynamic range 3D measurement using fringe projection. Optics Express, 2020, 28, 24363.	3.4	30
21	Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Optics Letters, 2020, 45, 1842.	3.3	139
22	Fast 3D surface defect detection with fringe projection. , 2020, , .		0
23	Stereo phase unwrapping method based on feedback projection. , 2020, , .		0
24	Learning-based absolute 3D shape measurement based on single fringe phase retrieval and speckle correlation. , 2020, , .		2
25	Robust absolute 3D measurement using stereo cost-volume filtering for fringe orders. , 2020, , .		0
26	Single-shot spatial frequency multiplex fringe pattern for phase unwrapping using deep learning. , 2020, , .		6
27	Dynamic 3D measurement of thermal deformation based on geometric-constrained stereo-matching with a stereo microscopic system. Measurement Science and Technology, 2019, 30, 125007.	2.6	11
28	Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme. Optics and Lasers in Engineering, 2019, 122, 1-7.	3.8	25
29	Micro deep learning profilometry for high-speed 3D surface imaging. Optics and Lasers in Engineering, 2019, 121, 416-427.	3.8	71
30	High-dynamic-range 3D shape measurement based on time domain superposition. Measurement Science and Technology, 2019, 30, 065004.	2.6	12
31	Temporal phase unwrapping using deep learning. Scientific Reports, 2019, 9, 20175.	3.3	81
32	High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping. Optics and Lasers in Engineering, 2019, 115, 21-31.	3.8	48
33	A new microscopic telecentric stereo vision system - Calibration, rectification, and three-dimensional reconstruction. Optics and Lasers in Engineering, 2019, 113, 14-22.	3.8	74
34	Fringe pattern analysis using deep learning. Advanced Photonics, 2019, 1, 1.	11.8	248
35	Bi-frequency temporal phase unwrapping using deep learning. , 2019, , .		2
36	High-speed 3D shape measurement using the optimized composite fringe patterns and stereo-assisted structured light system. Optics Express, 2019, 27, 2411.	3.4	92

#	Article	IF	CITATIONS
37	Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry. Optics Express, 2019, 27, 2713.	3.4	59
38	Calibration method for panoramic 3D shape measurement with plane mirrors. Optics Express, 2019, 27, 36538.	3.4	28
39	High-resolution real-time 360° 3D model reconstruction of a handheld object with fringe projection profilometry. Optics Letters, 2019, 44, 5751.	3.3	47
40	System Calibration for Panoramic 3D Measurement with Plane Mirrors. Lecture Notes in Computer Science, 2019, , 15-26.	1.3	1
41	Fast Stereo 3D Imaging Based on Random Speckle Projection and Its FPGA Implementation. Lecture Notes in Computer Science, 2019, , 205-216.	1.3	0
42	Robust Dynamic 3D Shape Measurement with Hybrid Fourier-Transform Phase-Shifting Profilometry. Lecture Notes in Computer Science, 2019, , 122-133.	1.3	0
43	Real-time 3D point cloud registration. , 2019, , .		0
44	High dynamic range and fast 3D measurement based on a telecentric stereo-microscopic system. , 2019, ,		0
45	Full-surface 3-D reconstruction based on surround structured lighting. , 2019, , .		0
46	Fast panoramic 3D shape measurement using the multi-view system with plane mirrors. , 2019, , .		0
47	Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry. Optics and Lasers in Engineering, 2018, 103, 127-138.	3.8	141
48	High-precision real-time 3D shape measurement based on a quad-camera system. Journal of Optics (United Kingdom), 2018, 20, 014009.	2.2	26
49	Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Optics and Lasers in Engineering, 2018, 102, 70-91.	3.8	186
50	High dynamic range 3D measurements with fringe projection profilometry: a review. Measurement Science and Technology, 2018, 29, 122001.	2.6	145
51	High-speed real-time 3D shape measurement based on adaptive depth constraint. Optics Express, 2018, 26, 22440.	3.4	49
52	Phase shifting algorithms for fringe projection profilometry: A review. Optics and Lasers in Engineering, 2018, 109, 23-59.	3.8	728
53	Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry. Applied Optics, 2018, 57, 772.	1.8	27
54	Optimal wavelength selection strategy in temporal phase unwrapping with projection distance minimization. Applied Optics, 2018, 57, 2352.	1.8	15

#	Article	IF	CITATIONS
55	High dynamic range 3D shape measurement based on the intensity response function of a camera. Applied Optics, 2018, 57, 1378.	1.8	41
56	Active depth estimation from defocus using a camera array. Applied Optics, 2018, 57, 4960.	1.8	11
57	Robust stereo phase unwrapping based on a quad-camera system. , 2018, , .		0
58	Motion-compensated three-step phase-shifting profilometry. , 2018, , .		0
59	High-speed three-dimensional shape measurement using improved bi-frequency scheme and number-theoretical phase unwrapping. , 2018, , .		0
60	High-speed 3D shape measurement using composite structured-light patterns and multiview system. , 2018, , .		0
61	Practical considerations for high speed real-time 3D measurements by the fringe projection. Proceedings of SPIE, 2017, , .	0.8	0
62	High speed 3D shape measurements with motion compensation. Proceedings of SPIE, 2017, , .	0.8	0
63	Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection. Measurement Science and Technology, 2017, 28, 075010.	2.6	19
64	Fast three-dimensional measurements for dynamic scenes with shiny surfaces. Optics Communications, 2017, 382, 18-27.	2.1	61
65	Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection. Optics Express, 2017, 25, 20381.	3.4	81
66	Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns. Optics Express, 2017, 25, 540.	3.4	22
67	High-precision real-time 3D shape measurement using a bi-frequency scheme and multi-view system. Applied Optics, 2017, 56, 3646.	2.1	45
68	Improved bi-frequency scheme to realize high-precision 3D shape measurement. , 2017, , .		0
69	Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe. , 2017, , .		0
70	Fast 3D shape measurements with reduced motion artifacts. , 2017, , .		0
71	Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system. Optics Express, 2016, 24, 20253.	3.4	155
72	Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging. Optics and Lasers in Engineering, 2016, 80, 24-31.	3.8	34

#	Article	IF	CITATIONS
73	Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement. Optics and Lasers in Engineering, 2016, 78, 35-47.	3.8	23
74	Principal component analysis based carrier removal approach for Fourier transform profilometry. , 2015, , .		0
75	A carrier removal technique for Fourier transform profilometry based on principal component analysis. Optics and Lasers in Engineering, 2015, 74, 80-86.	3.8	15
76	GPU-assisted real-time three dimensional shape measurement by speckle-embedded fringe. , 2015, , .		0
77	A carrier removal approach for fringe projection profilometry using principal component analysis. , 2015, , .		0
78	Graphics processing unit–assisted real-time three-dimensional measurement using speckle-embedded fringe. Applied Optics, 2015, 54, 6865.	2.1	34
79	Improved intensity-optimized dithering technique for 3D shape measurement. Optics and Lasers in Engineering, 2015, 66, 158-164.	3.8	39
80	Real-time 3D measurement based on structured light illumination considering camera lens distortion. Proceedings of SPIE, 2014, , .	0.8	0
81	High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion. Optics Communications, 2014, 329, 44-56.	2.1	36
82	General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique. Optics and Lasers in Engineering, 2014, 59, 56-71.	3.8	156
83	Optimized dithering technique for 3D shape measurement based on intensity residual error. Proceedings of SPIE, 2014, , .	0.8	0
84	High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Optics and Lasers in Engineering, 2013, 51, 953-960.	3.8	300
85	Automatic identification and removal of outliers for high-speed fringe projection profilometry. Optical Engineering, 2013, 52, 013605.	1.0	41
86	Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing. Applied Optics, 2012, 51, 4477.	1.8	120
87	High-speed three-dimensional profilometry for multiple objects with complex shapes. Optics Express, 2012, 20, 19493.	3.4	201