Marco Chianese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1562446/publications.pdf

Version: 2024-02-01

516710 552781 35 672 16 26 h-index citations g-index papers 36 36 36 691 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Decaying leptophilic dark matter at IceCube. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 055-055.	5.4	56
2	Radio signal of axion-photon conversion in neutron stars: A ray tracing analysis. Physical Review D, 2020, 101, .	4.7	48
3	Low energy IceCube data and a possible Dark Matter related excess. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 757, 251-256.	4.1	43
4	Interpreting IceCube 6-year HESE data as an evidence for hundred TeV decaying Dark Matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 773, 591-595.	4.1	38
5	Unique Multimessenger Signal of QCD Axion Dark Matter. Physical Review Letters, 2020, 124, 161101.	7.8	36
6	The dark side of the Littlest Seesaw: freeze-in, the two right-handed neutrino portal and leptogenesis-friendly fimpzillas. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 027-027.	5.4	35
7	Dark Matter interpretation of low energy IceCube MESE excess. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 007-007.	5.4	34
8	Starburst galaxies strike back: a multi-messenger analysis with Fermi-LAT and IceCube data. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4032-4049.	4.4	32
9	A consistent theory of decaying Dark Matter connecting IceCube to the Sesame Street. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 017-017.	5.4	30
10	Minimal seesaw extension for neutrino mass and mixing, leptogenesis and dark matter: FIMPzillas through the right-handed neutrino portal. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 030.	5 . 4	30
11	Interplay between neutrino and gravity portals for FIMP dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 034.	5 . 4	29
12	Impact of Higgs portal on gravity-mediated production of superheavy dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 019.	5.4	26
13	Probing relic neutrino radiative decays with 21 cm cosmology. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 790, 64-70.	4.1	23
14	Decaying dark matter at IceCube and its signature on High Energy gamma experiments. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 046-046.	5.4	23
15	Differentiable strong lensing: uniting gravity and neural nets through differentiable probabilistic programming. Monthly Notices of the Royal Astronomical Society, 2020, 496, 381-393.	4.4	23
16	Constraints on heavy decaying dark matter with current gamma-ray measurements. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 035.	5.4	16
17	Probing dark matter signals in neutrino telescopes through angular power spectrum. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 007-007.	5.4	15
18	Use of ANTARES and IceCube Data to Constrain a Single Power-law Neutrino Flux. Astrophysical Journal, 2017, 851, 36.	4. 5	15

#	Article	IF	Citations
19	Neutrinophilic Dark Matter in the epoch of IceCube and Fermi-LAT. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	5.4	14
20	Heavy decaying dark matter at future neutrino radio telescopes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 074.	5.4	14
21	Could Nearby Star-forming Galaxies Light Up the Pointlike Neutrino Sky?. Astrophysical Journal Letters, 2021, 919, L32.	8.3	14
22	Direct detection of light dark matter from evaporating primordial black holes. Physical Review D, 2022, 105, .	4.7	14
23	Electron scattering of light new particles from evaporating primordial black holes. Physical Review D, 2022, 105, .	4.7	12
24	Dark matter in the type Ib seesaw model. Journal of High Energy Physics, 2021, 2021, 1.	4.7	9
25	Strong thermal SO(10)-inspired leptogenesis in the light of recent results from long-baseline neutrino experiments. Journal of High Energy Physics, 2018, 2018, 1.	4.7	8
26	A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay. Journal of High Energy Physics, 2017, 2017, 1.	4.7	7
27	Robust limits from upcoming neutrino telescopes and implications on minimal dark matter models. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 054.	5.4	7
28	Chances for SUSY-GUT in the LHC Epoch. Journal of High Energy Physics, 2015, 2015, 1.	4.7	6
29	Characterising exotic matter driving wormholes. European Physical Journal Plus, 2017, 132, 1.	2.6	4
30	IceCube PeV neutrinos and leptophilic dark matter. Journal of Physics: Conference Series, 2016, 718, 042014.	0.4	3
31	Investigating two heavy neutral leptons neutrino seesaw mechanism at SHiP. International Journal of Modern Physics A, 2019, 34, 1950047.	1.5	3
32	Dark Matter scenarios at IceCube. , 2017, , .		2
33	Sensitivity of KM3NeT to Violation of Equivalence Principle. Symmetry, 2021, 13, 1353.	2.2	1
34	High-Energy Neutrinos from Starburst galaxies: implications for neutrino astronomy. Journal of Physics: Conference Series, 2021, 2156, 012082.	0.4	1
35	Angular power spectrum analysis on current and future high-energy neutrino data. Journal of Physics: Conference Series, 2020, 1468, 012167.	0.4	0