
Amaia Nogales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1562079/publications.pdf Version: 2024-02-01

6

#	Article	IF	CITATIONS
1	Chemical Seed Treatment And Mycorrhizal Inoculation Provide Better Development And Nutrition Of Common Bean Plants. Pest Management Science, 2022, , .	3.4	0
2	Exploring the Applicability of Calorespirometry to Assess Seed Metabolic Stability Upon Temperature Stress Conditions—Pisum sativum L. Used as a Case Study. Frontiers in Plant Science, 2022, 13, 827117.	3.6	4
3	Phosphate Fertilization and Mycorrhizal Inoculation Increase Corn Leaf and Grain Nutrient Contents. Agronomy, 2022, 12, 1597.	3.0	2
4	The effects of field inoculation of arbuscular mycorrhizal fungi through rye donor plants on grapevine performance and soil properties. Agriculture, Ecosystems and Environment, 2021, 313, 107369.	5.3	18
5	Detrimental effects of copper and EDTA co-application on grapevine root growth and nutrient balance. Rhizosphere, 2021, 19, 100392.	3.0	2
6	Carrot AOX2a Transcript Profile Responds to Growth and Chilling Exposure. Plants, 2021, 10, 2369.	3.5	7
7	Response of Mycorrhizal 'Touriga Nacionalâ€~ Variety Grapevines to High Temperatures Measured by Calorespirometry and Near-Infrared Spectroscopy. Plants, 2020, 9, 1499.	3.5	8
8	Mycorrhizal Inoculation Differentially Affects Grapevine's Performance in Copper Contaminated and Non-contaminated Soils. Frontiers in Plant Science, 2018, 9, 1906.	3.6	20
9	Screening natural variability for carrot breeding application – a target gene approach. Acta Horticulturae, 2017, , 69-76.	0.2	0
10	Characterization of the plastid terminal oxidase gene in carrot-involvement in carotenoids accumulation during storage root development. Acta Horticulturae, 2017, , 85-92.	0.2	0
11	A Functional Approach towards Understanding the Role of the Mitochondrial Respiratory Chain in an Endomycorrhizal Symbiosis. Frontiers in Plant Science, 2017, 8, 417.	3.6	29
12	Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.). Frontiers in Genetics, 2016, 7, 1.	2.3	120
13	Alternative Oxidase Gene Family in Hypericum perforatum L.: Characterization and Expression at the Post-germinative Phase. Frontiers in Plant Science, 2016, 7, 1043.	3.6	12
14	Isolation and characterization of plastid terminal oxidase gene from carrot and its relation to carotenoid accumulation. Plant Gene, 2016, 5, 13-21.	2.3	7
15	Carrot plastid terminal oxidase gene (DcPTOX) responds early to chilling and harbors intronic pre-miRNAs related to plant disease defense. Plant Gene, 2016, 7, 21-25.	2.3	7
16	Allelic variation on DcAOX1 gene in carrot (Daucus carota L.): An interesting simple sequence repeat in a highly variable intron. Plant Gene, 2016, 5, 49-55.	2.3	25
17	Can functional hologenomics aid tackling current challenges in plant breeding?. Briefings in Functional Genomics, 2016, 15, 288-297.	2.7	52

18 ExploringAOXgene diversity. , 2015, , 239-254.

Amaia Nogales

#	Article	IF	CITATIONS
19	Functional marker development fromAOXgenes requires deep phenotyping and individualized diagnosis. , 2015, , 273-280.		0
20	AOXgene diversity can affect DNA methylation and genome organization relevant for functional marker development. , 2015, , 281-285.		4
21	AOXdiversity studies stimulate novel tool development for phenotyping. , 2015, , 299-304.		1
22	Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene. PLoS ONE, 2015, 10, e0142339.	2.5	23
23	Phenotyping carrot (Daucus carota L.) for yield-determining temperature response by calorespirometry. Planta, 2015, 241, 525-538.	3.2	16
24	Calorespirometry, oxygen isotope analysis and functional-marker-assisted selection ('CalOxy-FMAS') for genotype screening: A novel concept and tool kit for predicting stable plant growth performance and functional marker identification. Briefings in Functional Genomics, 2015, 15, 10-5.	2.7	14
25	Calorespirometry as a tool for studying temperature response in carrot (<i>Daucus carota</i> L.). Engineering in Life Sciences, 2013, 13, 541-548.	3.6	13
26	Plantago lanceolata growth and Cr uptake after mycorrhizal inoculation in a Cr amended substrate. Agricultural and Food Science, 2012, 21, 72-79.	0.9	3
27	Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines. Plant and Soil, 2009, 317, 177-187.	3.7	42
28	Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza, 2008, 18, 211-216.	2.8	40