Andrew Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1562036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dark survival in a warming world. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122909.	2.6	75
2	Proteorhodopsin-Bearing Bacteria in Antarctic Sea Ice. Applied and Environmental Microbiology, 2010, 76, 5918-5925.	3.1	71
3	Melting out of sea ice causes greater photosynthetic stress in algae than freezing in ¹ . Journal of Phycology, 2007, 43, 948-956.	2.3	66
4	Sea ice, extremophiles and life on extra-terrestrial ocean worlds. International Journal of Astrobiology, 2018, 17, 1-16.	1.6	62
5	Phytoplankton and sea ice algal biomass and physiology during the transition between winter and spring (McMurdo Sound, Antarctica). Polar Biology, 2010, 33, 1547-1556.	1.2	52
6	The Response of Antarctic Sea Ice Algae to Changes in pH and CO2. PLoS ONE, 2014, 9, e86984.	2.5	51
7	The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms. Polar Biology, 2011, 34, 1019-1032.	1.2	44
8	Dark metabolism: a molecular insight into how the Antarctic seaâ€ice diatom <i>Fragilariopsis cylindrus</i> survives longâ€term darkness. New Phytologist, 2019, 223, 675-691.	7.3	40
9	Comparison of the microalgal community within fast ice at two sites along the Ross Sea coast, Antarctica. Antarctic Science, 2006, 18, 583-594.	0.9	38
10	Effect of temperature on the photosynthetic efficiency and morphotype of Phaeocystis antarctica. Journal of Experimental Marine Biology and Ecology, 2012, 429, 7-14.	1.5	35
11	Chlorophyllâ€ <i>a</i> in Antarctic Landfast Sea Ice: A First Synthesis of Historical Ice Core Data. Journal of Geophysical Research: Oceans, 2018, 123, 8444-8459.	2.6	34
12	Preliminary investigation into the stimulation of phytoplankton photophysiology and growth by whale faeces. Journal of Experimental Marine Biology and Ecology, 2013, 446, 1-9.	1.5	28
13	Chlorophyll fluorescence imaging analysis of the responses of Antarctic bottom-ice algae to light and salinity during melting. Journal of Experimental Marine Biology and Ecology, 2011, 399, 156-161.	1.5	25
14	Response of sea-ice microbial communities to environmental disturbance: an in situ transplant experiment in the Antarctic. Marine Ecology - Progress Series, 2011, 424, 25-37.	1.9	22
15	Low Salinity and High-Level UV-B Radiation Reduce Single-Cell Activity in Antarctic Sea Ice Bacteria. Applied and Environmental Microbiology, 2009, 75, 7570-7573.	3.1	21
16	THE SHORTâ€TERM EFFECT OF IRRADIANCE ON THE PHOTOSYNTHETIC PROPERTIES OF ANTARCTIC FASTâ€iCE MICROALGAL COMMUNITIES ¹ . Journal of Phycology, 2009, 45, 1290-1298.	2.3	20
17	The physiological response to increased temperature in over-wintering sea ice algae and phytoplankton in McMurdo Sound, Antarctica and TromsÃ, Sound, Norway. Journal of Experimental Marine Biology and Ecology, 2012, 428, 57-66.	1.5	19
18	Antarctic coastal microalgal primary production and photosynthesis. Marine Biology, 2012, 159, 2827-2837.	1.5	16

ANDREW MARTIN

#	Article	IF	CITATIONS
19	High single-cell metabolic activity in Antarctic sea ice bacteria. Aquatic Microbial Ecology, 2008, 52, 25-31.	1.8	14
20	Effect of elevated CO 2 concentration on microalgal communities in Antarctic pack ice. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 131, 160-169.	1.4	13
21	Effects of CO2 concentration on a late summer surface sea ice community. Marine Biology, 2017, 164, 1.	1.5	11
22	Towards improved estimates of sea-ice algal biomass: experimental assessment of hyperspectral imaging cameras for under-ice studies. Annals of Glaciology, 2017, 58, 68-77.	1.4	10
23	Insights into the Production and Role of Nitric Oxide in the Antarctic Seaâ€ice Diatom <i>Fragilariopsis cylindrus</i> . Journal of Phycology, 2020, 56, 1196-1207.	2.3	10
24	Mapping the in situ microspatial distribution of ice algal biomass through hyperspectral imaging of sea-ice cores. Scientific Reports, 2020, 10, 21848.	3.3	10
25	Preliminary evidence for the microbial loop in Antarctic sea ice using microcosm simulations. Antarctic Science, 2012, 24, 547-553.	0.9	9
26	Response of Antarctic sea-ice algae to an experimental decrease in pH: a preliminary analysis from chlorophyll fluorescence imaging of melting ice. Polar Research, 2018, 37, 1438696.	1.6	8
27	Extracellular organic carbon dynamics during a bottom-ice algal bloom (Antarctica). Aquatic Microbial Ecology, 2014, 73, 195-210.	1.8	6
28	The Southern Annular Mode (SAM) influences phytoplankton communities in the seasonal ice zone of the Southern Ocean. Biogeosciences, 2020, 17, 3815-3835.	3.3	6
29	Rapid Manipulation in Irradiance Induces Oxidative Free-Radical Release in a Fast-Ice Algal Community (McMurdo Sound, Antarctica). Frontiers in Plant Science, 2020, 11, 588005.	3.6	4
30	Rapid changes in spectral composition after darkness influences nitric oxide, glucose and hydrogen peroxide production in the Antarctic diatom Fragilariopsis cylindrus. Polar Biology, 2021, 44, 1289-1303.	1.2	2
31	Short note: extracellular export and consumption of glucose in Antarctic sea ice. Polar Biology, 2022, 45, 763-768.	1.2	1