Matthew R Ronshaugen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/156184/publications.pdf

Version: 2024-02-01

37 papers

2,654 citations

257450 24 h-index 330143 37 g-index

44 all docs

44 docs citations

44 times ranked 3570 citing authors

#	Article	IF	Citations
1	Hox protein mutation and macroevolution of the insect body plan. Nature, 2002, 415, 914-917.	27.8	359
2	The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biology, 2017, 15, 62.	3.8	286
3	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	5.6	221
4	MicroRNA evolution by arm switching. EMBO Reports, 2011, 12, 172-177.	4. 5	199
5	pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes and Development, 2004, 18, 687-699.	5.9	163
6	The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes and Development, 2005, 19, 2947-2952.	5.9	150
7	Functional Shifts in Insect microRNA Evolution. Genome Biology and Evolution, 2010, 2, 686-696.	2.5	131
8	Spatial regulation of microRNA gene expression in the Drosophila embryo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15907-15911.	7.1	84
9	Clusters of microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids Research, 2013, 41, 7745-7752.	14.5	84
10	Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genomics, 2020, 21, 47.	2.8	84
11	brother of rhomboid, a rhomboid-Related Gene Expressed during Early Drosophila Oogenesis, Promotes EGF-R/MAPK Signaling. Developmental Biology, 2000, 226, 255-266.	2.0	63
12	Visualization of trans-Homolog Enhancer-Promoter Interactions at the Abd-B Hox Locus in the Drosophila Embryo. Developmental Cell, 2004, 7, 925-932.	7.0	62
13	Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters. Development Genes and Evolution, 2008, 218, 127-139.	0.9	60
14	Sex-Biased Expression of MicroRNAs in Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2013, 7, e2402.	3.0	60
15	Evolution of the Ventral Midline in Insect Embryos. Developmental Cell, 2006, 11, 895-902.	7.0	58
16	MicroRNAs from the same precursor have different targeting properties. Silence: A Journal of RNA Regulation, 2012, 3, 8.	8.1	57
17	Comprehensive identification of Drosophila dorsal-ventral patterning genes using a whole-genome tiling array. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12763-12768.	7.1	50
18	Evolution of mir-92a Underlies Natural Morphological Variation in Drosophila melanogaster. Current Biology, 2013, 23, 523-528.	3.9	47

#	Article	IF	Citations
19	MicroRNA evolution, expression, and function during short germband development in <i>Tribolium castaneum </i> . Genome Research, 2016, 26, 85-96.	5.5	42
20	Fast-evolving microRNAs are highly expressed in the early embryo of <i>Drosophila virilis</i> . Rna, 2014, 20, 360-372.	3 . 5	40
21	Prostaglandin signaling regulates renal multiciliated cell specification and maturation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8409-8418.	7.1	39
22	Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider <i>Parasteatoda tepidariorum</i> . Genome Biology and Evolution, 2016, 8, 2133-2144.	2.5	38
23	Target Repression Induced by Endogenous microRNAs: Large Differences, Small Effects. PLoS ONE, 2014, 9, e104286.	2.5	33
24	Structure, evolution and function of the bi-directionally transcribed iab-4/iab-8 microRNA locus in arthropods. Nucleic Acids Research, 2013, 41, 3352-3361.	14.5	32
25	Homeobrain, a novel paired-like homeobox gene is expressed in the Drosophila brain. Mechanisms of Development, 2000, 96, 141-144.	1.7	26
26	Context-dependent regulation of Hox protein functions by CK2 phosphorylation sites. Development Genes and Evolution, 2008, 218, 321-332.	0.9	24
27	Conserved Temporal Patterns of MicroRNA Expression in Drosophila Support a Developmental Hourglass Model. Genome Biology and Evolution, 2014, 6, 2459-2467.	2.5	22
28	Structure and expression patterns of Drosophila TULP and TUSP, members of the tubby-like gene family. Mechanisms of Development, 2002, 117, 209-215.	1.7	21
29	smiFISH and embryo segmentation for single-cell multi-gene RNA quantification in arthropods. Communications Biology, 2021, 4, 352.	4.4	20
30	Abundant expression of somatic transposon-derived piRNAs throughout Tribolium castaneum embryogenesis. Genome Biology, 2017, 18, 184.	8.8	19
31	Visualizing gene expression during zebrafish pronephros development and regeneration. Methods in Cell Biology, 2019, 154, 183-215.	1.1	17
32	Silencing of an abdominal <i>Hox</i> gene during early development is correlated with limb development in a crustacean trunk. Evolution & Development, 2010, 12, 131-143.	2.0	16
33	Functional and Genetic Analysis of Spectraplakins in Drosophila. Methods in Enzymology, 2016, 569, 373-405.	1.0	16
34	The Transcription Factor-microRNA Regulatory Network during hESC-chondrogenesis. Scientific Reports, 2020, 10, 4744.	3.3	11
35	Single-cell visualization of <i>mir-9a</i> and <i>Senseless</i> co-expression during <i>Drosophila melanogaster</i> embryonic and larval peripheral nervous system development. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	6
36	The embryonic transcriptome of Parhyale hawaiensis reveals different dynamics of microRNAs and mRNAs during the maternal-zygotic transition. Scientific Reports, 2022, 12, 174.	3.3	3

#	Article	IF	CITATIONS
37	<i>miR-9a</i> regulates levels of both <i>rhomboid</i> mRNA and protein in the early <i>Drosophila melanogaster</i> embryo. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	0