FÃ;bio G Lepri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1561555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques. Talanta, 2007, 72, 349-359.	5.5	137
2	Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces—A review. Analytica Chimica Acta, 2009, 647, 137-148.	5.4	134
3	Feasibility of peak volume, side pixel and multiple peak registration in high-resolution continuum source atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1222-1230.	2.9	117
4	Determination of Trace Elements in Vegetable Oils and Biodiesel by Atomic Spectrometric Techniques—A Review. Applied Spectroscopy Reviews, 2011, 46, 175-206.	6.7	97
5	Method development for the determination of nickel in petroleum using line-source and high-resolution continuum-source graphite furnace atomic absorption spectrometry. Microchemical Journal, 2004, 77, 131-140.	4.5	88
6	High-resolution continuum source electrothermal atomic absorption spectrometry — An analytical and diagnostic tool for trace analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 873-883.	2.9	58
7	Speciation analysis of volatile and non-volatile vanadium compounds in Brazilian crude oils using high-resolution continuum source graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 2006, 558, 195-200.	5.4	56
8	Determination of Co, Cu, Fe, Mn, Ni and V in diesel and biodiesel samples by ETV-ICP-MS. Journal of Environmental Monitoring, 2008, 10, 1211.	2.1	53
9	Palladium as chemical modifier for the stabilization of volatile nickel and vanadium compounds in crude oil using graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2005, 20, 1332.	3.0	43
10	Evaluation of Brazilian and Venezuelan Crude Oil Samples by Means of the Simultaneous Determination of Ni and V as Their Total and Non-volatile Fractions Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Energy & Fuels, 2010, 24, 5907-5911.	5.1	40
11	Determination of mercury in biological samples using solid sampling high-resolution continuum source electrothermal atomization atomic absorption spectrometry with calibration against aqueous standards. Journal of Analytical Atomic Spectrometry, 2006, 21, 1321.	3.0	39
12	Determination of heavy metals in activated charcoals and carbon black for Lyocell fiber production using direct solid sampling high-resolution continuum source graphite furnace atomic absorption and inductively coupled plasma optical emission spectrometry. Talanta, 2010, 81, 980-987.	5.5	39
13	Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry (FS-FAAS) using Co as internal standard. Microchemical Journal, 2014, 117, 172-177.	4.5	37
14	Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 934-944.	2.9	36
15	Determination of sulfur in biological samples using high-resolution molecular absorption spectrometry in a graphite furnace with direct solid sampling. Journal of Analytical Atomic Spectrometry, 2010, 25, 1039.	3.0	35
16	Determination of cadmium in coal using solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2005, 382, 1835-1841.	3.7	34
17	Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 429-434.	2.9	21
18	Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 337-348.	2.9	20

FÃibio G Lepri

#	Article	IF	CITATIONS
19	Direct Determination of Dy, Sm, Eu, Tm, and Yb in Geological Samples by Slurry Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry. Analytical Letters, 2010, 43, 949-959.	1.8	15
20	New strategies for the simultaneous voltammetric quantification of Pb and Zn in hair cosmetics samples employing chemically modified composite electrodes. Measurement: Journal of the International Measurement Confederation, 2018, 125, 651-658.	5.0	15
21	Investigation of the feasibility to use Zeeman-effect background correction for the graphite furnace determination of phosphorus using high-resolution continuum source atomic absorption spectrometry as a diagnostic tool. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 24-32.	2.9	12
22	Determination of Ca, Cu, Fe and Mg in fresh and processed meat treated with tetramethylammonium hydroxide by atomic absorption spectrometry. Journal of the Brazilian Chemical Society, 2011, 22, 1850-1857.	0.6	11
23	Monte Carlo method applied to modeling copper transport in river sediments. Stochastic Environmental Research and Risk Assessment, 2012, 26, 1063-1079.	4.0	11
24	Evaluation of Extraction Induced by Emulsion Breaking for Ni and V Extraction from Off-Shore Brazilian Crude Oils. Energy & Fuels, 2019, 33, 10435-10441.	5.1	9
25	An improved drop casting electrochemical strategy for furosemide quantification in natural waters exploiting chemically reduced graphene oxide on glassy carbon electrodes. Analytical and Bioanalytical Chemistry, 2020, 412, 7123-7130.	3.7	7
26	Chemical modification for sulfur determination in human hair by high-resolution continuum source graphite furnace molecular absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 174, 106008.	2.9	4
27	Development of an Analytical Methodology for Chemical Profile of Cocaine seized in Rio de Janeiro. Brazilian Journal of Analytical Chemistry, 2018, 5, 28-39.	0.5	2
28	EVALUATION OF DIFFERENT METHODS FOR COPPER DETERMINATION IN INSULATING OILS BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY. Quimica Nova, 2014, , .	0.3	1