Ilian Atanassov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1561406/publications.pdf

Version: 2024-02-01

279798 377865 2,117 34 23 34 h-index citations g-index papers 40 40 40 3151 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Serine ADP-Ribosylation Depends on HPF1. Molecular Cell, 2017, 65, 932-940.e6.	9.7	249
2	Serine is a new target residue for endogenous ADP-ribosylation on histones. Nature Chemical Biology, 2016, 12, 998-1000.	8.0	189
3	Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. Journal of Cell Biology, 2015, 208, 429-442.	5. 2	180
4	Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. ELife, 2017, 6, .	6.0	169
5	Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan. Cell Metabolism, 2017, 25, 610-621.	16.2	137
6	Hierarchical RNA Processing Is Required for Mitochondrial Ribosome Assembly. Cell Reports, 2016, 16, 1874-1890.	6.4	116
7	Small-molecule inhibitors of human mitochondrial DNA transcription. Nature, 2020, 588, 712-716.	27.8	115
8	Increased Total mtDNA Copy Number Cures Male Infertility Despite Unaltered mtDNA Mutation Load. Cell Metabolism, 2017, 26, 429-436.e4.	16.2	84
9	Bayesian prediction of RNA translation from ribosome profiling. Nucleic Acids Research, 2017, 45, gkw1350.	14.5	64
10	Increased proteome coverage by combining <scp>PAGE</scp> and peptide isoelectric focusing: Comparative study of gelâ€based separation approaches. Proteomics, 2013, 13, 2947-2955.	2.2	59
11	Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nature Communications, 2018, 9, 1202.	12.8	57
12	Deregulated Splicing Is a Major Mechanism of RNA-Induced Toxicity in Huntington's Disease. Journal of Molecular Biology, 2019, 431, 1869-1877.	4.2	57
13	A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps. Plant Methods, 2009, 5, 14.	4.3	53
14	<scp>TEFM</scp> regulates both transcription elongation and <scp>RNA</scp> processing in mitochondria. EMBO Reports, 2019, 20, .	4.5	51
15	Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nature Cell Biology, 2021, 23, 771-781.	10.3	51
16	Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. Science Advances, 2020, 6, eaba8271.	10.3	47
17	<scp>FBXL</scp> 4 deficiency increases mitochondrial removal by autophagy. EMBO Molecular Medicine, 2020, 12, e11659.	6.9	44
18	Mitochondria shed their outer membrane in response to infection-induced stress. Science, 2022, 375, eabi4343.	12.6	42

#	Article	IF	CITATIONS
19	SLIRP stabilizes LRPPRC via an RRM–PPR protein interface. Nucleic Acids Research, 2016, 44, 6868-6882.	14.5	39
20	High levels of TFAM repress mammalian mitochondrial DNA transcription in vivo. Life Science Alliance, 2021, 4, e202101034.	2.8	38
21	The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replication. Science Advances, 2021, 7, .	10.3	36
22	NFYB-1 regulates mitochondrial function and longevity via lysosomal prosaposin. Nature Metabolism, 2020, 2, 387-396.	11.9	35
23	Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature, 2022, 606, 603-608.	27.8	32
24	C6orf203 is an RNA-binding protein involved in mitochondrial protein synthesis. Nucleic Acids Research, 2019, 47, 9386-9399.	14.5	26
25	MitoRibo-Tag Mice Provide a Tool for InÂVivo Studies of Mitoribosome Composition. Cell Reports, 2019, 29, 1728-1738.e9.	6.4	24
26	The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters. Science Advances, 2021, 7, .	10.3	23
27	Human GTPBP5 is involved in the late stage of mitoribosome large subunit assembly. Nucleic Acids Research, 2021, 49, 354-370.	14.5	21
28	Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFAT-1. Nature Communications, 2021, 12, 2176.	12.8	19
29	The RNA-Protein Interactome of Differentiated Kidney Tubular Epithelial Cells. Journal of the American Society of Nephrology: JASN, 2019, 30, 564-576.	6.1	16
30	Step-by-Step Sample Preparation of Proteins for Mass Spectrometric Analysis. Methods in Molecular Biology, 2021, 2261, 13-23.	0.9	14
31	Tissue-specific modulation of gene expression in response to lowered insulin signalling in Drosophila. ELife, 2021, 10, .	6.0	12
32	Mapping the secretome of human chondrogenic progenitor cells with mass spectrometry. Annals of Anatomy, 2017, 212, 4-10.	1.9	7
33	Stable Isotope Labeling of Amino Acids in Flies (SILAF) Reveals Differential Phosphorylation of Mitochondrial Proteins Upon Loss of OXPHOS Subunits. Molecular and Cellular Proteomics, 2021, 20, 100065.	3.8	6
34	Quantitative Proteomics in Drosophila with Holidic Stable-Isotope Labeling of Amino Acids in Fruit Flies (SILAF). Methods in Molecular Biology, 2021, 2192, 75-87.	0.9	2