Li Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1561312/publications.pdf

Version: 2024-02-01

198 papers	2,292 citations	257450 24 h-index	330143 37 g-index
200	200	200	1508
all docs	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design and Test Analysis of Small-Scale Direct Current Superconducting Current-Limiting Switch Prototype. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	O
2	Research on the Characteristics of a High-Temperature Superconducting Leakage Flux-Controlled Reactor. IEEE Transactions on Industrial Electronics, 2022, 69, 10101-10111.	7.9	1
3	Influence Analysis of SMES Magnet Design Scheme on Its Voltage Distribution Characteristic. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-11.	1.7	0
4	State Predictive Control of Modular SMES Magnet Based on Deep Reinforcement Learning. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	1
5	Electromagnetic Design and Performance Analysis of a Hybrid-Type Superconducting Fault Current Limiter in Shipboard MVDC IPS. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-4.	1.7	1
6	The Influence of SMES Magnet Operation Parameters on Voltage Distribution Characteristic. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	3
7	High-Temperature Superconducting Cable Optimization Design Software Based on 2-D Finite Element Model. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	3
8	Parameter Matching and Structural Optimization Design of H-SFCL in MMC Ship MVDC System. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-6.	1.7	3
9	A novel AC loss measurement method for HTS coils based on parameter identification. Superconductor Science and Technology, 2022, 35, 065021.	3.5	4
10	A full spectrum <i>k</i> â€distributionâ€based weightedâ€sumâ€ofâ€grayâ€gases model for pressurized oxyâ€fu combustion. International Journal of Energy Research, 2021, 45, 3410-3420.	uel 4.5	11
11	Frequency-Domain Analysis and the Effect on Voltage Distribution of the HTS SMES. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	3
12	Virtual power plant implementation scheme in Shenzhen city. Environmental Progress and Sustainable Energy, 2021, 40, e13598.	2.3	5
13	Analysis of Overcurrent Performance of YBCO Tape Considering Different Heat Exchange Conductions. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	4
14	Applied Superconductivity and Electromagnetic Devices - Principles and Current Exploration Highlights. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-29.	1.7	8
15	Performance Comparison of Three Types of SFCL in Shipboard MVDC IPS. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	6
16	Thermal and Electrical Analysis of No-Insulation Magnet During Transient Process Based on 2D Finite Element Method. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	3
17	Study on Energy Storage Magnet State Assessment Method Considering Temperature Rise. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-11.	1.7	3
18	Review on MILD Combustion of Gaseous Fuel: Its Definition, Ignition, Evolution, and Emissions. Energy & Energy	5.1	45

#	Article	IF	Citations
19	Thermal Analysis of Tri-axial HTS Cable. , 2021, , .		1
20	Modular Design of 3 MJ/2 MW Toroidal Magnet and Analysis of Dynamic Temperature Rise. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-8.	1.7	2
21	Corrections to "Dimension Reduction Calculation Method of Toroidal Magnet―[Jun 20 Art. no. 4902206]. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-1.	1.7	O
22	Calculation of CORC Cable Loss Using a Coupled Electromagnetic-Thermal T-A Formulation Model. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-7.	1.7	10
23	The Influence of Electromagnetic Vibration Caused by AC Current On the Performance of Y-Ba-Cu-O Tapes. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	2
24	A Novel Quench Detection Method Based on CNN-LSTM Model. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	5
25	Simulation Analysis of 2D Finite Element Axial Transient Temperature Distribution of HTS Cable. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-6.	1.7	6
26	A Simplified 2D Modeling Method for Electromagnetic Analysis of HTS Power Transmission Cable Spiraled With Coated Conductors. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-6.	1.7	2
27	Research on DC overcurrent characteristics and life prediction of YBCO tapes. Superconductor Science and Technology, 2021, 34, 105007.	3.5	2
28	Corrections to "Study on Energy Storage Magnet State Assessment Method Considering Temperature Rise―[Mar 21 Art. no. 4600411]. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-1.	1.7	0
29	Research on M-SMES Temperature Equilibrium Control Strategies Considering State Assessment. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-8.	1.7	2
30	Experimental Analysis of Flux-Coupling-Type Superconducting Fault Current Limiter Prototypes. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	1
31	Comparative Analysis of Three Types of SFCL Considering Current-Limiting Requirement of MMC-HVDC System. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	6
32	Study of DC Superconducting Current-Limiting Switch in MVDC Shipboard Power System. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	2
33	Simplified Design of R-SFCL With Shunt Reactor for Protecting HTS Cable in Distribution Network. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	10
34	Study on the Influence of Thermal and Magnetic Field on CORC Cable Properties by a 2D Model. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	9
35	A Method for Measuring AC Critical Current of HTS Coil Based on Thermal Stability. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-7.	1.7	3
36	Concept Design of BU for Mesh-like Constant Current Seafloor Observation Networks. , 2021, , .		0

#	Article	IF	CITATIONS
37	Experimental investigation on MILD combustion of co-firing biomass and pulverized coal fuel blend in a pilot-scale furnace. The Proceedings of the International Conference on Power Engineering (ICOPE), 2021, 2021.15, 2021-0193.	0.0	O
38	Dynamic Modeling on the Mode Switching Strategy of a 35 MW _{th} Oxy-fuel Combustion Pilot Plant. Energy & Samp; Fuels, 2020, 34, 2260-2271.	5.1	6
39	AC loss measurement of HTS coil under periodic current. Physica C: Superconductivity and Its Applications, 2020, 569, 1353562.	1.2	20
40	Analysis and Evaluation Method of Demand Response Market Potential in Guangdong Province. , 2020, , .		0
41	Power flow optimization of distribution network with HTS cable. , 2020, , .		2
42	Dimension Reduction Calculation Method of Toroidal Magnet. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.7	11
43	Application of Flux-Coupling-Type Superconducting Fault Current Limiter on Shipboard MVDC Integrated Power System. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-8.	1.7	18
44	Optimal Design and Thermal Analysis of Current Leads in Superconducting Energy Pipeline. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-10.	1.7	2
45	Analysis of R-SFCL With Shunt Resistor in MMC-HVDC System Using Novel <i>R-Q</i> Method. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	23
46	Experimental Research on Critical Current Behavior of Various Commercial HTS Tapes. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.7	5
47	Voltage Distribution Research on Flux-Coupling-Type SFCL. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	5
48	Research on Energy Management Scheme of Commercial Buildings Cluster Considering Demand Response. , 2020, , .		2
49	Study on Coordination of Resistive SFCLs and Hybrid-Type Circuit Breakers to Protect a HVDC System With LCC and VSC Stations. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.7	18
50	Critical Current Degradation of YBCO Tape With Different Stabilizing Layers Under Cyclic Mechanical Strains. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-7.	1.7	5
51	Re-Recognition of the MILD Combustion Regime by Initial Conditions of <i>T</i> _{in} and <i>X</i> _{O2} for Methane in a Nonadiabatic Well-Stirred Reactor. Energy & Ener	5.1	26
52	Critical Current Degradation Behavior of Coated Conductor Subjected to Repeat Overcurrent. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.7	5
53	Design and Analysis of Four Different Current Leads for Superconducting DC Energy Pipeline. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	5
54	Investigation of a Modified Flux-Coupling-Type SFCL for Low-Voltage Ride-Through Fulfillment of a Virtual Synchronous Generator. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.7	27

#	Article	IF	CITATIONS
55	Experimental Study on the Performance Change of YBCO Tapes Under Repeated Overcurrent. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-10.	1.7	11
56	Simplified Design of Preset Stress Cone for HTS DC Energy Pipeline. , 2020, , .		0
57	Experimental Study of Fiber Bragg Grating Applied on Quench Detection of HTS Tapes. , 2020, , .		1
58	Optimization of Resistive Type Superconducting Fault Current Limiter and Circuit Breaker in Hybrid HVDC Transmission System. , 2020, , .		0
59	Heat Leakage Measurement of Energy Pipeline Current Leads by Temperature Gradient Method., 2020,,.		O
60	Hysteresis Characteristics Analysis of a Flux-coupling type Superconducting Fault Current Limiter. , 2020, , .		0
61	Design and Analysis of Superconducting Current-Limiting Switch in Ship MVDC System. , 2020, , .		О
62	Research on Thermal Behavior of HTS Cable in Fault and Recovery. , 2020, , .		0
63	Transient Stability Enhancement of a Multi-Machine Power System Using Modified Flux-Coupling-Type Superconducting Fault Current Limiters. , 2020, , .		0
64	Current-Limiting Characteristics of an Improved Flux-Coupling-Type SFCL. , 2020, , .		0
65	Current-Limiting Performance of Three Types of SFCL in MMC-HVDC System. , 2020, , .		1
66	Current-Limiting Performance of Three Types of SFCL in Shipboard MVDC IPS. , 2020, , .		0
67	Optimization of SMES-Battery Hybrid Energy Storage System for Wind Power Smoothing. , 2020, , .		4
68	Research of a Resistive-Type SFCL for Protection of a Power Electronic Transformer., 2020,,.		0
69	New Background Field Estimation Methods for Improving Numerical Multiscale Model in AC Loss Calculation. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-12.	1.7	1
70	Pareto optimal allocation of resistiveâ€type fault current limiters in active distribution networks with inverterâ€interfaced and synchronous distributed generators. Energy Science and Engineering, 2019, 7, 2554-2571.	4.0	14
71	Parameter Matching and Optimization of a Hybrid Type DC SFCL Considering the Transient Characteristics of VSC-Based DC Systems. Energies, 2019, 12, 3522.	3.1	8
72	A Short-term Load Forecasting Model Based on Composite Cascaded Artificial Neural Network with A Multi-factor Identification Method. , 2019, , .		1

#	Article	IF	Citations
73	Saturation and Hysteresis Characteristics Analysis of a HTS Controllable Reactor With Orthogonally Configured Core. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	1
74	Experimental and Numerical Study of the Fuel-NO _{<i>x</i>} Formation at High CO ₂ Concentrations in a Jet-Stirred Reactor. Energy & Samp; Fuels, 2019, 33, 6797-6808.	5.1	11
75	A novel simplified modeling method based on R–Q curve of resistive type SFCL in power systems. Physica C: Superconductivity and Its Applications, 2019, 563, 82-87.	1.2	11
76	Optimal control strategy of load aggregators with demand response. Journal of Engineering, 2019, 2019, 1033-1036.	1.1	4
77	Capacity-Control Optimization of SMES in Distribution Networks With Renewable Energy. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.7	3
78	Integrated design method for superconducting magnetic energy storage considering the high frequency pulse width modulation pulse voltage on magnet. Applied Energy, 2019, 248, 1-17.	10.1	31
79	AC Loss Analysis of a Flux-Coupling Type Superconducting Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	6
80	Numerical Model of HTS Cable and Its Electric-Thermal Properties. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	16
81	Research on the Magnetic Properties of Iron Core for Saturated Iron-Core Superconducting Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	2
82	Aggregate Control Strategy for Thermostatically Controlled Loads with Demand Response. Energies, 2019, 12, 683.	3.1	9
83	Failure Analysis of YBCO Tapes Considering the Amplitude and Duration of Sinusoidal Overcurrent. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	8
84	Study on AC Loss Characteristics in HTS Windings of a HTS Controllable Reactor With Orthogonally Configured Core. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	2
85	Experimental Analysis of Quench Characteristic in HTS Tapes and Coils. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.7	7
86	Reaction Characteristics and MILD Combustion of Residual Char in a Pilot-Scale Furnace. Energy & Energy & Fuels, 2019, 33, 12791-12800.	5.1	16
87	Study of Resistive-Type Superconducting Fault Current Limiters for a Hybrid High Voltage Direct Current System. Materials, 2019, 12, 26.	2.9	18
88	Combined Use of a Resistive SFCL and DC-link Regulation of a SMES for FRT Enhancement of a DFIG Wind Turbine Under Different Faults. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-8.	1.7	21
89	Application and Design of a Resistive-Type Superconducting Fault Current Limiter for Efficient Protection of a DC Microgrid. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-7.	1.7	41
90	Integrated Control Method for the Active Superconducting Current Controller. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.7	1

#	Article	IF	CITATIONS
91	Research on the Application of Superconducting Magnetic Energy Storage in Microgrids for Smoothing Power Fluctuation Caused by Operation Mode Switching. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-6.	1.7	13
92	Electromagnetic Design and Performance Analysis of a Flux-Coupling-Type SFCL. IEEE Transactions on Applied Superconductivity, 2018 , 28 , $1-5$.	1.7	12
93	Application of a voltage compensation type active superconducting current controller to current limiting capability of power grid. International Journal of Electrical Power and Energy Systems, 2018, 101, 385-393.	5. 5	1
94	SMES-Battery Energy Storage System for the Stabilization of a Photovoltaic-Based Microgrid. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-7.	1.7	78
95	Optimal Equivalence Ratio to Minimize NO Emission during Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Empty Fuels, 2018, 32, 4478-4492.	5.1	24
96	Conceptual Design and Evaluation of an HTS Magnet for an SMES Used in Improving Transient Performance of a Grid-Connected PV System. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-8.	1.7	14
97	Study on the Thermal Characteristic of a 150 kJ/100 kW Conduction-Cooled HTS Magnet. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-8.	1.7	4
98	Conceptual Design and Performance Evaluation of a 35-kV/500-A Flux-Coupling-Type SFCL for Protection of a DFIG-Based Wind Farm. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-7.	1.7	29
99	Tests and Analysis of a Small-Scale Hybrid-Type DC SFCL Prototype. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-6.	1.7	15
100	Investigation on Performance of No-Insulation Coil Considering the Influence of Stress Distribution on Radial Characteristic Resistivity. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-7.	1.7	7
101	Excitation Effect Analysis of a Novel HTS Controllable Reactor With Orthogonally Configured Core Based on Dynamic Inductance Matrix. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-4.	1.7	4
102	Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy) Tj ETQq0 0 0 rgB1	78.8rlock	2 10 Tf 50 30
103	Levitation Force Computation of HTS/PM System Based on <inline-formula> <tex-math notation="LaTeX">\$H\$ </tex-math> </inline-formula> -Formulation. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	8
104	New Dependence of NO Emissions on the Equivalence Ratio in Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Samp; Fuels, 2018, 32, 12905-12918.	5.1	26
105	Low-Voltage Ride-Through Improvement in a DFIGBased Wind Turbine by Integrated Use of a SFCL and DC-link Regulation of a SMES System. , 2018, , .		0
106	Oxy-Fuel Combustion Characteristics of Pulverized Coal in a 3 MW Pilot-Scale Furnace. Energy & Samp; Fuels, 2018, 32, 10522-10529.	5.1	22
107	Numerical Simulation of a No-Insulation BSCCO Toroidal Magnet Applied in Magnetic Confinement Fusion. Science and Technology of Nuclear Installations, 2018, 2018, 1-10.	0.8	5
108	Design and Verification Test of a Flux-Coupling-Type Superconducting Fault Current Limiter. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	10

#	Article	IF	CITATIONS
109	Numerical Multiscale Model for AC Loss Calculation of Large-Scale HTS Solenoid Magnets. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	3
110	Design and Verification Test of an HTS Leakage Flux-Controlled Reactor. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	4
111	AC Loss Prediction Model of a 150 kJ HTS SMES Based on Multi-Scale Model and Artificial Neural Networks. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	10
112	Coordination of SMES, SFCL and Distributed Generation Units for Micro-Grid Stability Enhancement via Wireless Communications. IEEE Access, 2018, 6, 36699-36710.	4.2	12
113	The Supplementary Design Method of HTS SMES System Considering Voltage Distribution Characteristic. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	11
114	Application of a Novel Superconducting Fault Current Limiter in a VSC-HVDC System. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-6.	1.7	23
115	Verification of HTS SMES Lumped Parameter Network Model. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	8
116	Voltage Distribution Characteristic of a Flux-Coupling Superconducting Fault Current Limiter in Different Operating Conditions. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-6.	1.7	5
117	Analysis of Magnetic Circuit and Leakage Magnetic Field of a Saturated Iron-Core Superconducting Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	10
118	Study on the Current Limiting Performance of a Novel SFCL in DC Systems. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-6.	1.7	29
119	Performance and Analysis of No-Insulation HTS Toroidal Magnet. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	4
120	AC Loss Analysis of a Hybrid HTS Magnet for SMES Based on <italic>H</italic> -Formulation. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	24
121	A Coupling Simulation and Modeling Method for High Temperature Superconducting Magnets. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	2
122	Development of a New Type of HTS Controllable Reactor With Orthogonally Configured Core. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	9
123	Numerical and experimental investigation for cleaning process of submerged outside-in hollow fiber membrane. Water Science and Technology, 2017, 76, 1283-1299.	2.5	7
124	A Study on the Design and Comparison of 1–100-MJ-Class SMES Magnet With Different Coil Configurations. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-9.	1.7	18
125	Signal De-Noising of Quench Detection by Real-Time Wavelet Analysis Algorithm for HTS Coil and Magnet. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	5
126	Evaluation index system for photovoltaic systems statistical characteristics under hazy weather conditions in central China. IET Renewable Power Generation, 2017, 11, 1794-1803.	3.1	6

#	Article	lF	CITATION
127	Wind Generation Systems including Energy Storage. International Journal of Rotating Machinery, 2017, 2017, 1-2.	0.8	4
128	Enhancing LVRT Capability of DFIG-Based Wind Turbine Systems with SMES Series in the Rotor Side. International Journal of Rotating Machinery, 2017, 2017, 1-8.	0.8	10
129	Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System. Energies, 2017, 10, 56.	3.1	14
130	Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads. Energies, 2016, 9, 769.	3.1	15
131	Electromagnetic Calculation of a 35 kV/3.5 MVA Single-Phase HTS Controllable Reactor With Field–Circuit Coupled-FEM. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	1
132	Simulation Analysis and Experimental Tests of a Small-Scale Flux-Coupling Type Superconducting Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2016, , 1-1.	1.7	7
133	An Automatic Compensation Method for Measuring the AC loss of a Superconducting Coil. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	5
134	Design and Simulation of HTS Coils With a New Structure for an Inductive Pulsed Power Generator. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	2
135	Comparison of Inductive and Resistive SFCL to Robustness Improvement of a VSC-HVDC System With Wind Plants Against DC Fault. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-8.	1.7	72
136	Improved Discretization-Based Decoupled Feedback Control for a Series-Connected Converter of SCC. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-6.	1.7	5
137	Application of a SFCL for Fault Ride-Through Capability Enhancement of DG in a Microgrid System and Relay Protection Coordination. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-8.	1.7	56
138	Current and Voltage Distribution Analysis of Control Winding in a 35-kV HTS-CR Considering AC Losses. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	0
139	Voltage Distribution Characteristic of HTS SMES Magnet. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	12
140	Performance Analysis and Prototype Design of a D-Core-Type Single-Phase HTS Controllable Reactor. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	6
141	Numerical Simulation and Experimental Validation of a Cooling Process in a 150-kJ SMES Magnet. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-7.	1.7	11
142	Design of Cryogenic Cooling System of a 35-kV/3.5-MVA Single-Phase HTS-Controllable Reactor. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	3
143	Application of SMES in the Microgrid Based on Fuzzy Control. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	44
144	Application of a hybrid energy storage system in the fast charging station of electric vehicles. IET Generation, Transmission and Distribution, 2016, 10, 1092-1097.	2.5	72

#	Article	lF	CITATIONS
145	Application of field-circuit coupled FEM in the design of a HTS controllable-reactor. , 2015, , .		3
146	Improved discretization-based decoupled feedback control for series connected converter of SCC. , 2015, , .		0
147	Stress Analysis and Bobbin Structure Optimization Design of a 35kV HTS-controllable Reactor. Physics Procedia, 2015, 65, 278-281.	1.2	1
148	Comparative study of inductive and resistive SFCL to mitigate the DC fault current in a VSC-HVDC system integrated with wind power farms. , $2015, \ldots$		9
149	Operating parameters optimization of SMES considering transient thermal stability. , 2015, , .		0
150	Design and advanced control strategies of a hybrid energy storage system for the grid integration of wind power generations. IET Renewable Power Generation, 2015, 9, 89-98.	3.1	92
151	An evaluation method for small-scale conduction cooled SMES cryogenic cooling system based on thermal analysis. Cryogenics, 2015, 71, 30-38.	1.7	9
152	Development of a Movable HTS SMES System. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-9.	1.7	43
153	Application of Small-Sized SMES in an EV Charging Station With DC Bus and PV System. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-6.	1.7	58
154	An Experimental and Numerical Study on the Inductance Variation of HTS Magnets. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	11
155	The Experimental Research and Analysis of a HTS SMES Hybrid Magnet. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	10
156	Design of Superconductivity Windings of a 35-kV/3.5-MVA Single-Phase HTS-Controllable Reactor. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	8
157	100 kJ/50 kW HTS SMES for Micro-Grid. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-6.	1.7	33
158	Quench Detection Design for HTS SMES. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	6
159	Status Evaluation Method for SMES Used in Power Grid. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-10.	1.7	18
160	Simulation on a micro-grid system based on superconducting magnetic energy storage. , 2014, , .		3
161	Design of 110kV/2kA High Temperature Superconducting Cable Termination Stress Cones. Advanced Materials Research, 2014, 1070-1072, 1011-1015.	0.3	0
162	The optimal allocation of D-SMES for enhancing transient stability of power system. , 2014, , .		0

#	Article	IF	Citations
163	The Utilization of Genetic Algorithm on High Temperature Superconducting Magnet Design. Advanced Materials Research, 2014, 960-961, 382-385.	0.3	1
164	Reducing the Fault Current and Overvoltage in a Distribution System With Distributed Generation Units Through an Active Type SFCL. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	11
165	The Effect of Flux Diverters on Energy Storage Capacity and Heat Losses in a HTS SMES. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	12
166	Development of a Leakage Flux-Controlled Reactor. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	19
167	Numerical Simulation of Coupled Heat Transfer, Stress, and Electromagnetic Properties in an SMES Magnet. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	0
168	Conceptual Design of the Cryogenic System for a 12 MW Superconducting Wind Turbine Generator. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	5
169	Evaluation of Three Designs for a 35-kV Class Superconducting Reactor. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	3
170	Laboratory and Field Tests of Movable Conduction-Cooled High-Temperature SMES for Power System Stability Enhancement. IEEE Transactions on Applied Superconductivity, 2013, 23, 5701607-5701607.	1.7	15
171	Thermal Analysis of HTS Power Cable Using 3-D FEM Model. IEEE Transactions on Applied Superconductivity, 2013, 23, 5402404-5402404.	1.7	12
172	Electromagnetic and Thermal Design of a Conduction-Cooling 150 kJ/100 kW Hybrid SMES System. IEEE Transactions on Applied Superconductivity, 2013, 23, 5701404-5701404.	1.7	10
173	Distribution of AC loss in a HTS magnet for SMES with different operating conditions. Physica C: Superconductivity and Its Applications, 2013, 494, 213-216.	1.2	22
174	The Conceptual Design of Hybrid High Temperature Superconducting Magnet. IEEE Transactions on Applied Superconductivity, 2012, 22, 4903005-4903005.	1.7	7
175	Energy Function Based SMES Controller for Transient Stability Enhancement. IEEE Transactions on Applied Superconductivity, 2012, 22, 5701304-5701304.	1.7	11
176	Design of a Termination for the HTS Power Cable. IEEE Transactions on Applied Superconductivity, 2012, 22, 5800504-5800504.	1.7	9
177	SMES Based Excitation System for Doubly-Fed Induction Generator in Wind Power Application. IEEE Transactions on Applied Superconductivity, 2011, 21, 1105-1108.	1.7	66
178	Experimental Investigation of an Active Superconducting Current Controller. IEEE Transactions on Applied Superconductivity, 2011, 21, 1258-1262.	1.7	17
179	Conduction-Cooled YBCO HTS Current Lead for SMES Application. IEEE Transactions on Applied Superconductivity, 2010, 20, 1737-1740.	1.7	16
180	Determination of SMES capacity to enhance the dynamic stability of power system. Physica C: Superconductivity and Its Applications, 2010, 470, 1707-1710.	1.2	15

#	Article	IF	Citations
181	Superconducting Magnet Based VSC Suitable for Interface of Renewable Power Sources. IEEE Transactions on Applied Superconductivity, 2010, 20, 880-883.	1.7	9
182	SMES Based Dynamic Voltage Restorer for Voltage Fluctuations Compensation. IEEE Transactions on Applied Superconductivity, 2010, 20, 1360-1364.	1.7	57
183	Techno-Economic Evaluation of a Novel Flux-Coupling Type Superconducting Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2010, 20, 1242-1245.	1.7	29
184	Current Limiting Characteristics of a Novel Flux-Coupling Type Superconducting Fault Current Limiter. IEEE Transactions on Applied Superconductivity, 2010, 20, 1143-1146.	1.7	55
185	Electromagnetic Characteristics Analysis of Air-Core Transformer Used in Voltage Compensation Type Active SFCL. IEEE Transactions on Applied Superconductivity, 2010, 20, 1194-1198.	1.7	13
186	Development and Field Test of Movable Conduction-Cooled High Temperature SMES. , 2010, , .		0
187	Techno-Economic Feasibility Study on HTS Power Cables. IEEE Transactions on Applied Superconductivity, 2009, 19, 1774-1777.	1.7	11
188	A novel Current Control based VSC topology suitable for power transmission application. , 2009, , .		5
189	Temperature Characteristic of a Conduction-Cooled HTS SMES Magnet. IEEE Transactions on Applied Superconductivity, 2009, 19, 2044-2047.	1.7	13
190	Discretization-Based Decoupled State-Feedback Control for Current Source Power Conditioning System of SMES. IEEE Transactions on Power Delivery, 2008, 23, 2097-2104.	4.3	46
191	The Application of Active Superconducting DC Fault Current Limiter in Hybrid AC/DC Power Supply Systems. IEEE Transactions on Applied Superconductivity, 2008, 18, 672-675.	1.7	19
192	Development of a Conduction-Cooled HTS SMES. IEEE Transactions on Applied Superconductivity, 2007, 17, 3846-3852.	1.7	33
193	Modeling and simulation of a permanent magnet brushless DC motor fed by PWM Z-source inverter. , 2007, , .		4
194	Active superconducting DC fault current limiter based on flux compensation. Physica C: Superconductivity and Its Applications, 2006, 442, 108-112.	1.2	14
195	Utility Based Optimal Layering and Adaptive Transmission for Video Multicasting over Wireless Systems. , 0, , .		O
196	Improved State-Feedback Control for Current Source Converter of SMES. Advanced Materials Research, 0, 512-515, 1049-1054.	0.3	1
197	Dynamic Thermal Characteristics of a Conduction-Cooled HTS SMES System. Advanced Materials Research, 0, 732-733, 322-326.	0.3	3
198	Simulation analysis of UF membrane filtration process based on magnetic field characteristics. Water Science and Technology: Water Supply, 0, , .	2.1	0