Alessandro Dess

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1561154/alessandro-dessi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

72	1,438 citations	24	35
papers		h-index	g-index
74	1,590 ext. citations	3.9	4.09
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
7 ²	Comparative enantioseparation of planar chiral ferrocenes on polysaccharide-based chiral stationary phases <i>Chirality</i> , 2022 ,	2.1	2
71	Interaction Studies between Carbonic Anhydrase and a Sulfonamide Inhibitor by Experimental and Theoretical Approaches. <i>ACS Medicinal Chemistry Letters</i> , 2022 , 13, 271-277	4.3	1
70	Exploring interaction modes between polysaccharide-based selectors and biologically active 4,4?-bipyridines by experimental and computational analysis. <i>Journal of Chromatography Open</i> , 2022 , 2, 100030		1
69	Unravelling functions of halogen substituents in the enantioseparation of halogenated planar chiral ferrocenes on polysaccharide-based chiral stationary phases: experimental and electrostatic potential analyses <i>Journal of Chromatography A</i> , 2022 , 1673, 463097	4.5	0
68	Antamanide Analogs as Potential Inhibitors of Tyrosinase. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 6240	6.3	1
67	Early combination treatment with existing HIV antivirals: an effective treatment for COVID-19?. <i>European Review for Medical and Pharmacological Sciences</i> , 2021 , 25, 2435-2448	2.9	8
66	Molecular Docking and Comparative Inhibitory Efficacy of Naturally Occurring Compounds on Vegetative Growth and Deoxynivalenol Biosynthesis in. <i>Toxins</i> , 2021 , 13,	4.9	2
65	Enantioseparations of polyhalogenated 4,4Sbipyridines on polysaccharide-based chiral stationary phases and molecular dynamics simulations of selector-selectand interactions. <i>Electrophoresis</i> , 2021 , 42, 1853-1863	3.6	3
64	Enantioseparation of 5,5SDibromo-2,2SDichloro-3-Selanyl-4,4SBipyridines on Polysaccharide-Based Chiral Stationary Phases: Exploring Chalcogen Bonds in Liquid-Phase Chromatography. <i>Molecules</i> , 2021 , 26,	4.8	6
63	Rational Design, Synthesis, Characterization and Evaluation of Iodinated 4,4SBipyridines as New Transthyretin Fibrillogenesis Inhibitors. <i>Molecules</i> , 2020 , 25,	4.8	8
62	Comparative enantioseparation of chiral 4,4Sbipyridine derivatives on coated and immobilized amylose-based chiral stationary phases. <i>Journal of Chromatography A</i> , 2020 , 1625, 461303	4.5	11
61	Synthesis and Studies of the Inhibitory Effect of Hydroxylated Phenylpropanoids and Biphenols Derivatives on Tyrosinase and Laccase Enzymes. <i>Molecules</i> , 2020 , 25,	4.8	3
60	Noncovalent interactions in high-performance liquid chromatography enantioseparations on polysaccharide-based chiral selectors. <i>Journal of Chromatography A</i> , 2020 , 1623, 461202	4.5	27
59	Halogen bond in separation science: A critical analysis across experimental and theoretical results. Journal of Chromatography A, 2020 , 1616, 460788	4.5	13
58	Factors Impacting Eand Ehole Regions as Revealed by the Electrostatic Potential and Its Source Function Reconstruction: The Case of 4,4SBipyridine Derivatives. <i>Molecules</i> , 2020 , 25,	4.8	6
57	Recent studies of docking and molecular dynamics simulation for liquid-phase enantioseparations. <i>Electrophoresis</i> , 2019 , 40, 1881-1896	3.6	19
56	Synthesis of potential HIV integrase inhibitors inspired by natural polyphenol structures. <i>Natural Product Research</i> , 2018 , 32, 1893-1901	2.3	3

(2005-2018)

Polysaccharide-based chiral stationary phases as halogen bond acceptors: A novel strategy for detection of stereoselective Ehole bonds in solution. <i>Journal of Separation Science</i> , 2018 , 41, 1247-1256	3.4	27	
Halogen bond in high-performance liquid chromatography enantioseparations: Description, features and modelling. <i>Journal of Chromatography A</i> , 2018 , 1563, 71-81	4.5	22	
Enantioseparation of fluorinated 3-arylthio-4,4Sbipyridines: Insights into chalcogen and Ehole bonds in high-performance liquid chromatography. <i>Journal of Chromatography A</i> , 2018 , 1567, 119-129	4.5	16	
Synthesis, molecular modeling and biological evaluation of two new chicoric acid analogs. <i>Natural Product Research</i> , 2017 , 31, 397-403	2.3	1	
Exploring Heteroaryl-pyrazole Carboxylic Acids as Human Carbonic Anhydrase XII Inhibitors. <i>ACS Medicinal Chemistry Letters</i> , 2017 , 8, 941-946	4.3	16	
Insights into halogen bond-driven enantioseparations. <i>Journal of Chromatography A</i> , 2016 , 1467, 228-23	38 1.5	30	
Natural Phenolic Inhibitors of Trichothecene Biosynthesis by the Wheat Fungal Pathogen Fusarium culmorum: A Computational Insight into the Structure-Activity Relationship. <i>PLoS ONE</i> , 2016 , 11, e0157	33176	16	
Virtual Screening and Biological Validation of Novel Influenza Virus PA Endonuclease Inhibitors. <i>ACS Medicinal Chemistry Letters</i> , 2015 , 6, 866-71	4.3	25	
4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls. <i>Letters in Drug Design and Discovery</i> , 2015 , 12, 131-139	0.8	6	
Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. <i>Journal of Agricultural and Food Chemistry</i> , 2014 , 62, 4969-78	5.7	41	
Mutational analysis of the binding pockets of the diketo acid inhibitor L-742,001 in the influenza virus PA endonuclease. <i>Journal of Virology</i> , 2013 , 87, 10524-38	6.6	56	
Design and synthesis of novel polycycles based on the 3H-pyrrolo/6,7-dihydropyrido[1,2-a]indole scaffold as templates for pharmaceutical development. <i>Journal of Heterocyclic Chemistry</i> , 2011 , 48, 116	1 ⁻¹ 7168	3 ²	
Virtual screening-driven identification of human carbonic anhydrase inhibitors incorporating an original, new pharmacophore. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2011 , 21, 2515-20	2.9	7	
Design, synthesis, molecular modeling, and anti-HIV-1 integrase activity of a series of photoactivatable diketo acid-containing inhibitors as affinity probes. <i>Antiviral Research</i> , 2009 , 81, 267-7	6 ^{10.8}	28	
DNA Binders: 1. Evaluation of DNA-Interactive Ability, Design, and Synthesis of Novel Intercalating Agents. <i>Letters in Drug Design and Discovery</i> , 2009 , 6, 56-62	0.8	4	
DNA Binders: 2. Molecular Recognition of DNA by 2,3,6,7-tetrahydro-1Hpyrrolo[1,2-a]indole-1,8(5H)-dione bis(4,5-dihydro-1H-imidazol-2-ylhydrazone) as a Prototype of “Two-Armed” Intercalating Agents. <i>Letters in Drug Design and</i>	0.8	2	
Design and synthesis of bis-amide and hydrazide-containing derivatives of malonic acid as potential HIV-1 integrase inhibitors. <i>Molecules</i> , 2008 , 13, 2442-61	4.8	28	
Design of novel bioisosteres of beta-diketo acid inhibitors of HIV-1 integrase. <i>Antiviral Chemistry and Chemotherapy</i> , 2005 , 16, 41-61	3.5	52	
	detection of stereoselective Bhole bonds in solution. Journal of Separation Science, 2018, 41, 1247-1256. Halogen bond in high-performance liquid chromatography A, 2018, 1563, 71-81 Enantioseparation of fluorinated 3-arylthio-4,4Sbipyridines: Insights into chalcogen and Bhole bonds in high-performance liquid chromatography. Journal of Chromatography A, 2018, 1567, 119-129 Synthesis, molecular modeling and biological evaluation of two new chicoric acid analogs. Natural Product Research, 2017, 31, 397-403 Exploring Heteroaryl-pyrazole Carboxylic Acids as Human Carbonic Anhydrase XII Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 941-946 Insights into halogen bond-driven enantioseparations. Journal of Chromatography A, 2016, 1467, 228-23. Natural Phenolic Inhibitors of Trichothecene Biosynthesis by the Wheat Fungal Pathogen Fusarium culmorum: A Computational Insight into the Structure-Activity Relationship. PLoS ONE, 2016, 11, e0157. Virtual Screening and Biological Validation of Novel Influenza Virus PA Endonuclease Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 866-71 4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls. Letters in Drug Design and Discovery, 2015, 12, 131-139 Natural and natural-like phenolic Inhibitors of type B trichothecene in vitro production by the wheat (Tricium sp.) pathogen Fusarium culmorum. Journal of Agricultural and Food Chemistry, 2014, 62, 4969-78 Mutational analysis of the binding pockets of the diketo acid inhibitor L-742,001 in the influenza virus PA endonuclease. Journal of Virology, 2013, 87, 10524-38 Design and synthesis of novel polycycles based on the 3H-pyrrolo/6,7-dihydropyrido[1,2-a]indole scaffold as templates for pharmaceutical development. Journal of Heterocyclic Chemistry, 2011, 48, 116 Virtual screening-driven identification of human carbonic anhydrase inhibitors incorporating an original, new pharmacophore. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2515-20 Design,	detection of stereoselective thole bonds in solution. Journal of Separation Science, 2018, 41, 1247-1256 344 Halogen bond in high-performance liquid chromatography and provided in the provided of the provided in the provid	detection of stereoselective thole bonds in solution. Journal of Separation Science, 2018, 41, 1247-1256 34 47 Halogen bond in high-performance liquid chromatography A, 2018, 1563, 71-81 Enantioseparation of fluorinated 3-arythio-4, 45bipyridines: Insights into chalcogen and Bhole bonds in high-performance liquid chromatography. Journal of Chromatography A, 2018, 1567, 119-129 4-5 16 Synthesis, molecular modelling and biological evaluation of two new chicoric acid analogs. Natural Product Research, 2017, 31, 397-403 Exploring Heteroaryl-pyrazole Carboxylic Acids as Human Carbonic Anhydrase XII Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 941-946 Insights into halogen bond-driven enantioseparations. Journal of Chromatography A, 2016, 1467, 228-238,5 30 Natural Phenolic Inhibitors of Trichothecene Biosynthesis by the Wheat Fungal Pathogen Fusarium culmorum: A Computational Insight into the Structure-Activity Relationship. PLoS ONE, 2016, 11, e0157376 16 Virtual Screening and Biological Validation of Novel Influenza Virus PA Endonuclease Inhibitors. 43 25 4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls. Letters in Drug Design and Discovery, 2015, 12, 131-139 Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticums ps) pathogen Fusarium culmorum. Journal of Agricultural and Food Chemistry, 2014 57 Mutational analysis of the binding pockets of the diketo acid inhibitor L-742,001 in the influenza virus PA endonuclease. Journal of Virology, 2013, 87, 10524-38 Design and synthesis of novel polycycles based on the 3H-pyrrolofs,7-dihydropyrido[1,2-a]indole scaffold as templates for pharmaceutical development. Journal of Heterocyclic Chemistry, 2011, 48, 116 1 th 68 2 Virtual screening-driven identification of human carbonic anhydrase inhibitors incorporating an original, new pharmacophore. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2515-20 29 7 Design, synthesis, mo

37	Design and synthesis of novel dihydroxyindole-2-carboxylic acids as HIV-1 integrase inhibitors. <i>Antiviral Chemistry and Chemotherapy</i> , 2004 , 15, 67-81	3.5	26
36	Design and synthesis of novel indole beta-diketo acid derivatives as HIV-1 integrase inhibitors. Journal of Medicinal Chemistry, 2004 , 47, 5298-310	8.3	112
35	Binding of Copper(II) toPilocarpine\(\textstyle \) <i>Journal of Chemical Research Synopses</i> , 1997 , 106-107		4
34	Copper(II), nickel(II), zinc(II), and molybdenum(VI) complexes of desferrioxamine B in aqueous solution. <i>Journal of Inorganic Biochemistry</i> , 1997 , 65, 281-286	4.2	60
33	Binding of Oxovanadium(IV) to Guanosine 5EMonophosphate. <i>Inorganic Chemistry</i> , 1996 , 35, 6349-6352	5.1	18
32	EPR and potentiometric reinvestigation of copper(II) complexation with simple oligopeptides and related compounds. <i>Journal of Inorganic Biochemistry</i> , 1996 , 63, 99-117	4.2	82
31	Coordination of oxovanadium(IV) to aminocarboxylic acids in aqueous solution. <i>Polyhedron</i> , 1994 , 13, 1763-1771	2.7	14
30	Oxovanadium(IV) complexes of mercaptocarboxylic acids. <i>Journal of the Chemical Society Dalton Transactions</i> , 1993 , 1849-1855		20
29	Formation of tris-chelated vanadium(IV) complexes by interaction of oxovanadium(IV) with catecholamines, 3-(3,4-dihydroxyphenyl)alanine and related ligands in aqueous solution. <i>Journal of the Chemical Society Dalton Transactions</i> , 1993 , 2057-2063		18
28	EPR and proton ENDOR study of the solution equilibria of bis(2-ethyl-2-hydroxybutanoato(2-))oxochromate(V) and bis(2-hydroxy-2-methylbutanoato(2-))oxochromate(V). <i>Inorganic Chemistry</i> , 1993 , 32, 578-581	5.1	17
27	EPR investigation of the oxovanadium(IV) complexes formed by the tripeptide glutathione and some related ligands in aqueous solution. <i>Journal of Inorganic Biochemistry</i> , 1993 , 52, 275-86	4.2	32
26	Coordination of Copper(II) to Polyaminopolycarboxylic Acids in Aqueous Solution. <i>Journal of Coordination Chemistry</i> , 1992 , 25, 265-270	1.6	6
25	Structural information on chromium(V) complexes of 1,2-diols in solution, as determined by isotropic and anisotropic proton ENDOR spectroscopy. <i>Inorganic Chemistry</i> , 1992 , 31, 2404-2408	5.1	21
24	Oxovanadium(IV) complex formation by simple sugars in aqueous solution. <i>Journal of Inorganic Biochemistry</i> , 1992 , 45, 169-77	4.2	35
23	Vanadium(IV) and oxovanadium(IV) complexes of hydroxamic acids and related ligands. <i>Journal of Inorganic Biochemistry</i> , 1992 , 48, 279-287	4.2	20
22	Complexation of oxovanadium(IV) by humic and tannic acids. <i>Journal of Inorganic Biochemistry</i> , 1990 , 39, 109-115	4.2	7
21	Reduction of chromate ions by glutathione tripeptide in the presence of sugar ligands. <i>Journal of Inorganic Biochemistry</i> , 1990 , 39, 217-226	4.2	33
20	Potentiometric and spectroscopic studies on oxovanadium(IV) complexes of salicylic acid and catechol and some derivatives. <i>Journal of the Chemical Society Dalton Transactions</i> , 1990 , 2903-2907		24

(1983-1990)

Proton electron nuclear double resonance spectra of oxovanadium(IV) complexes formed by salicylic and o-diphenolic ligands in aqueous solution. <i>Journal of the Chemical Society Dalton Transactions</i> , 1990 , 457		3
Stabilization of the open-chain structure of D-galacturonic acid in a dimeric complex with oxovanadium(IV). <i>Journal of the Chemical Society Dalton Transactions</i> , 1990 , 1997-1999		15
Formation and structure of the tris(catecholato)vanadate(IV) complex in aqueous solution. <i>Inorganic Chemistry</i> , 1990 , 29, 1586-1589	5.1	54
Oxovanadium(IV) and copper(II) coordination by d-galacturonic and d-glucuronic acids. <i>Carbohydrate Research</i> , 1989 , 188, 25-34	2.9	34
Oxovanadium(IV) adsorption by plant roots. ESR identification of mobile and immobilized species. Journal of Inorganic Biochemistry, 1989 , 35, 71-78	4.2	1
In vitro interaction of mutagenic chromium (VI) with red blood cells. FEBS Letters, 1989, 257, 52-4	3.8	33
Proton electron nuclear double resonance study of oxovanadium(IV) complexes of D-galacturonic and polygalacturonic acids. <i>Journal of the Chemical Society Dalton Transactions</i> , 1989 , 1283		22
Proton electron nuclear double resonance study of oxovanadium(IV) complexes of o-diphenolic ligands. <i>Journal of the Chemical Society Dalton Transactions</i> , 1989 , 1289		4
Reduction of chromium(VI) by D-galacturonic acid and formation of stable chromium(V) intermediates. <i>Inorganica Chimica Acta</i> , 1988 , 153, 61-65	2.7	39
Oxovanadium(iv) complexes of malic, succinic, and 2-mercaptosuccinic acids. <i>Journal of Inorganic Biochemistry</i> , 1988 , 33, 99-109	4.2	15
Chromium adsorption by plant roots and formation of long-lived Cr(V) species: An ecological hazard?. <i>Journal of Inorganic Biochemistry</i> , 1988 , 34, 157-166	4.2	53
Selective determination of vanadium(IV) and vanadium(V) in excised plant roots. <i>Communications in Soil Science and Plant Analysis</i> , 1988 , 19, 355-366	1.5	0
Oxidation of D-galacturonic acid by vanadium(V). <i>Inorganica Chimica Acta</i> , 1986 , 120, 49-51	2.7	15
Determination of vanadate(V) by conductometric anion chromatography. <i>Journal of Chromatography A</i> , 1985 , 320, 450-454	4.5	1
Copper(II) complexation by D-glucosamine. Spectroscopic and potentiometric studies. <i>Inorganica Chimica Acta</i> , 1985 , 107, 45-48	2.7	63
High-performance liquid chromatographic determination of formic acid in cleavage reactions of carbohydrates. <i>Journal of Chromatography A</i> , 1983 , 268, 539-542	4.5	5
The reduction of Fe(III) to Fe(II) and V(V) to V(IV) by polygalacturonic acid: A reduction and complexation mechanism of biochemical significance. <i>Inorganica Chimica Acta</i> , 1983 , 80, L53-L55	2.7	31
New aspects of the interaction between polysaccharides and metal ions in relation to the mineral nutrition of plant roots. <i>Inorganica Chimica Acta</i> , 1983 , 79, 231-232	2.7	5
	salicylic and o-diphenolic ligands in aqueous solution. <i>Journal of the Chemical Society Dalton Transactions</i> , 1990 , 457 Stabilization of the open-chain structure of D-galacturonic acid in a dimeric complex with oxovanadium(IV). <i>Journal of the Chemical Society Dalton Transactions</i> , 1990 , 1997-1999 Formation and structure of the tris(catecholato)vanadate(IV) complex in aqueous solution. <i>Inorganic Chemistry</i> , 1990 , 29, 1586-1589 Oxovanadium(IV) and copper(II) coordination by d-galacturonic and d-glucuronic acids. <i>Carbohydrate Research</i> , 1989 , 188, 25-34 Oxovanadium(IV) adsorption by plant roots. ESR identification of mobile and immobilized species. <i>Journal of Inorganic Biochemistry</i> , 1989 , 35, 71-78 In vitro interaction of mutagenic chromium (VI) with red blood cells. <i>FEBS Letters</i> , 1989 , 257, 52-4 Proton electron nuclear double resonance study of oxovanadium(IV) complexes of D-galacturonic and polygalacturonic acids. <i>Journal of the Chemical Society Dalton Transactions</i> , 1989 , 1283 Proton electron nuclear double resonance study of oxovanadium(IV) complexes of o-diphenolic ligands. <i>Journal of the Chemical Society Dalton Transactions</i> , 1989 , 1289 Reduction of chromium(VI) by D-galacturonic acid and formation of stable chromium(V) intermediates. <i>Inorganica Chimica Acta</i> , 1988 , 153, 61-65 Oxovanadium(IV) complexes of malic, succinic, and 2-mercaptosuccinic acids. <i>Journal of Inorganic Biochemistry</i> , 1988 , 33, 99-109 Chromium adsorption by plant roots and formation of long-lived Cr(V) species: An ecological hazard? <i>Journal of Inorganic Biochemistry</i> , 1988 , 34, 157-166 Selective determination of vanadium(IV) and vanadium(V) in excised plant roots. <i>Communications in Soll Science and Plant Analysis</i> , 1988 , 19, 355-366 Oxidation of D-galacturonic acid by vanadium(IV). <i>Inorganica Chimica Acta</i> , 1986 , 120, 49-51 Determination of vanadate(V) by conductometric anion chromatography. <i>Journal of Chromatography A</i> , 1988 , 320, 450-454 Copper(III) complexation by D-glucosamine.	salicytic and o-diphenolic ligands in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1990, 457 Stabilization of the open-chain structure of D-galacturonic acid in a dimeric complex with oxovanadium(IV). Journal of the Chemical Society Dalton Transactions, 1990, 1997-1999 Formation and structure of the tris(catecholato)vanadate(IV) complex in aqueous solution. Inorganic Chemistry, 1990, 29, 1586-1589 Oxovanadium(IV) and copper(III) coordination by d-galacturonic and d-glucuronic acids. Carbohydrote Research, 1992, 188, 25-34 Oxovanadium(IV) adsorption by plant roots. ESR identification of mobile and immobilized species. Journal of Inorganic Biochemistry, 1989, 35, 71-78 In vitro interaction of mutagenic chromium (VI) with red blood cells. FEBS Letters, 1989, 257, 52-4 3.8 Proton electron nuclear double resonance study of oxovanadium(IV) complexes of D-galacturonic and polygalacturonic acids. Journal of the Chemical Society Dalton Transactions, 1989, 1283 Proton electron nuclear double resonance study of oxovanadium(IV) complexes of o-diphenolic ligands. Journal of the Chemical Society Dalton Transactions, 1989, 1289 Reduction of chromium (VI) by D-galacturonic acid and formation of stable chromium(V) intermediates. Inorganica Chimica Acta, 1988, 133, 99-109 Oxovanadium(IV) complexes of malic, succinic, and 2-mercaptosuccinic acids. Journal of Inorganic Biochemistry, 1988, 34, 157-166 Selective determination of vanadium(IV) and vanadium(V) in excised plant roots. Communications in 2soll Science and Plant Analysis, 1988, 19, 355-366 Oxidation of D-galacturonic acid by vanadium(V). Inorganica Chimica Acta, 1986, 120, 49-51 2.7 Determination of vanadate(V) by conductometric anion chromatography. Journal of Chromatography A, 1985, 320, 450-454 Copper(II) complexation by D-glucosamine. Spectroscopic and potentiometric studies. Inorganica Chimica Acta, 1985, 107, 45-48 High-performance liquid chromatographic determination of formic acid in cleavage reactions of carbohydriates. Jou

Early combination treatment with existing HIV antivirals: an effective treatment for COVID-19?

3