Alessandro Dessì

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1561154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative enantioseparation of planar chiral ferrocenes on polysaccharideâ€based chiral stationary phases. Chirality, 2022, , .	2.6	7
2	Interaction Studies between Carbonic Anhydrase and a Sulfonamide Inhibitor by Experimental and Theoretical Approaches. ACS Medicinal Chemistry Letters, 2022, 13, 271-277.	2.8	6
3	Exploring interaction modes between polysaccharide-based selectors and biologically active 4,4′-bipyridines by experimental and computational analysis. Journal of Chromatography Open, 2022, 2, 100030.	2.2	7
4	Unravelling functions of halogen substituents in the enantioseparation of halogenated planar chiral ferrocenes on polysaccharide-based chiral stationary phases: experimental and electrostatic potential analyses. Journal of Chromatography A, 2022, 1673, 463097.	3.7	7
5	Antamanide Analogs as Potential Inhibitors of Tyrosinase. International Journal of Molecular Sciences, 2022, 23, 6240.	4.1	4
6	Enantioseparation of 5,5′-Dibromo-2,2′-dichloro-3-selanyl-4,4′-bipyridines on Polysaccharide-Based Chiral Stationary Phases: Exploring Chalcogen Bonds in Liquid-Phase Chromatography. Molecules, 2021, 26, 221.	3.8	17
7	Enantioseparations of polyhalogenated 4,4'â€bipyridines on polysaccharideâ€based chiral stationary phases and molecular dynamics simulations of selector–selectand interactions. Electrophoresis, 2021, 42, 1853-1863.	2.4	9
8	Early combination treatment with existing HIV antivirals: an effective treatment for COVID-19?. European Review for Medical and Pharmacological Sciences, 2021, 25, 2435-2448.	0.7	17
9	Molecular Docking and Comparative Inhibitory Efficacy of Naturally Occurring Compounds on Vegetative Growth and Deoxynivalenol Biosynthesis in Fusarium culmorum. Toxins, 2021, 13, 759.	3.4	5
10	Halogen bond in separation science: A critical analysis across experimental and theoretical results. Journal of Chromatography A, 2020, 1616, 460788.	3.7	23
11	Factors Impacting σ- and π-Hole Regions as Revealed by the Electrostatic Potential and Its Source Function Reconstruction: The Case of 4,4′-Bipyridine Derivatives. Molecules, 2020, 25, 4409.	3.8	15
12	Syk Inhibitors: New Computational Insights into Their Intraerythrocytic Action in Plasmodium falciparum Malaria. International Journal of Molecular Sciences, 2020, 21, 7009.	4.1	7
13	Rational Design, Synthesis, Characterization and Evaluation of Iodinated 4,4′-Bipyridines as New Transthyretin Fibrillogenesis Inhibitors. Molecules, 2020, 25, 2213.	3.8	15
14	Comparative enantioseparation of chiral 4,4'-bipyridine derivatives on coated and immobilized amylose-based chiral stationary phases. Journal of Chromatography A, 2020, 1625, 461303.	3.7	20
15	Synthesis and Studies of the Inhibitory Effect of Hydroxylated Phenylpropanoids and Biphenols Derivatives on Tyrosinase and Laccase Enzymes. Molecules, 2020, 25, 2709.	3.8	10
16	Noncovalent interactions in high-performance liquid chromatography enantioseparations on polysaccharide-based chiral selectors. Journal of Chromatography A, 2020, 1623, 461202.	3.7	55
17	Recent studies of docking and molecular dynamics simulation for liquidâ€phase enantioseparations. Electrophoresis, 2019, 40, 1881-1896.	2.4	37
18	Synthesis of potential HIV integrase inhibitors inspired by natural polyphenol structures. Natural Product Research, 2018, 32, 1893-1901.	1.8	3

#	Article	IF	CITATIONS
19	Polysaccharideâ€based chiral stationary phases as halogen bond acceptors: A novel strategy for detection of stereoselective Ïfâ€hole bonds in solution. Journal of Separation Science, 2018, 41, 1247-1256.	2.5	34
20	Halogen bond in high-performance liquid chromatography enantioseparations: Description, features and modelling. Journal of Chromatography A, 2018, 1563, 71-81.	3.7	32
21	Enantioseparation of fluorinated 3-arylthio-4,4'-bipyridines: Insights into chalcogen and ï€-hole bonds in high-performance liquid chromatography. Journal of Chromatography A, 2018, 1567, 119-129.	3.7	22
22	Synthesis, molecular modeling and biological evaluation of two new chicoric acid analogs. Natural Product Research, 2017, 31, 397-403.	1.8	1
23	Exploring Heteroaryl-pyrazole Carboxylic Acids as Human Carbonic Anhydrase XII Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 941-946.	2.8	23
24	Natural Phenolic Inhibitors of Trichothecene Biosynthesis by the Wheat Fungal Pathogen Fusarium culmorum: A Computational Insight into the Structure-Activity Relationship. PLoS ONE, 2016, 11, e0157316.	2.5	22
25	Insights into halogen bond-driven enantioseparations. Journal of Chromatography A, 2016, 1467, 228-238.	3.7	38
26	Virtual Screening and Biological Validation of Novel Influenza Virus PA Endonuclease Inhibitors. ACS Medicinal Chemistry Letters, 2015, 6, 866-871.	2.8	33
27	4-Substituted-2-Methoxyphenol: Suitable Building Block to Prepare New Bioactive Natural-like Hydroxylated Biphenyls. Letters in Drug Design and Discovery, 2014, 12, 131-139.	0.7	6
28	Natural and Natural-like Phenolic Inhibitors of Type B Trichothecene <i>in Vitro</i> Production by the Wheat (<i>Triticum</i> sp.) Pathogen <i>Fusarium culmorum</i> . Journal of Agricultural and Food Chemistry, 2014, 62, 4969-4978.	5.2	50
29	Mutational Analysis of the Binding Pockets of the Diketo Acid Inhibitor L-742,001 in the Influenza Virus PA Endonuclease. Journal of Virology, 2013, 87, 10524-10538.	3.4	67
30	Design and synthesis of novel polycycles based on the 3 <i>H</i> â€pyrrolo/6,7â€dihydropyrido[1,2â€ <i>a</i>]indole scaffold as templates for pharmaceutical development. Journal of Heterocyclic Chemistry, 2011, 48, 1161-1168.	2.6	3
31	Virtual screening-driven identification of human carbonic anhydrase inhibitors incorporating an original, new pharmacophore. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2515-2520.	2.2	7
32	DNA Binders: 1. Evaluation of DNA-Interactive Ability, Design, and Synthesis of Novel Intercalating Agents. Letters in Drug Design and Discovery, 2009, 6, 56-62.	0.7	6
33	Design, synthesis, molecular modeling, and anti-HIV-1 integrase activity of a series of photoactivatable diketo acid-containing inhibitors as affinity probes. Antiviral Research, 2009, 81, 267-276.	4.1	29
34	DNA Binders: 2. Molecular Recognition of DNA by 2,3,6,7-tetrahydro-1Hpyrrolo[1,2-a]indole-1,8(5H)-dione bis(4,5-dihydro-1H-imidazol-2-ylhydrazone) as a Prototype of "Two-Armed" Intercalating Agents. Letters in Drug Design and Discovery, 2009. 6. 246-251.	0.7	2
35	Design and Synthesis of Bis-amide and Hydrazide-containing Derivatives of Malonic Acid as Potential HIV-1 Integrase Inhibitors. Molecules, 2008, 13, 2442-2461.	3.8	31
36	Design of Novel Bioisosteres of β-Diketo Acid Inhibitors of HIV-1 Integrase. Antiviral Chemistry and Chemotherapy, 2005, 16, 41-61.	0.6	56

ALESSANDRO DESSì

#	Article	IF	CITATIONS
37	Design and Synthesis of Novel Dihydroxyindole-2-Carboxylic Acids as HIV-1 Integrase Inhibitors. Antiviral Chemistry and Chemotherapy, 2004, 15, 67-81.	0.6	29
38	Design and Synthesis of Novel Indole Î ² -Diketo Acid Derivatives as HIV-1 Integrase Inhibitors. Journal of Medicinal Chemistry, 2004, 47, 5298-5310.	6.4	125
39	Binding of Copper(II) to Pilocarpineâ€. Journal of Chemical Research Synopses, 1997, , 106-107.	0.3	4
40	Copper(II), nickel(II), zinc(II), and molybdenum(VI) complexes of desferrioxamine B in aqueous solution. Journal of Inorganic Biochemistry, 1997, 65, 281-286.	3.5	67
41	Binding of Oxovanadium(IV) to Guanosine 5â€~-Monophosphate. Inorganic Chemistry, 1996, 35, 6349-6352.	4.0	22
42	EPR and potentiometric reinvestigation of copper(II) complexation with simple oligopeptides and related compounds. Journal of Inorganic Biochemistry, 1996, 63, 99-117.	3.5	91
43	Coordination of oxovanadium(IV) to aminocarboxylic acids in aqueous solution. Polyhedron, 1994, 13, 1763-1771.	2.2	20
44	EPR investigation of the oxovanadium(IV) complexes formed by the tripeptide glutathione and some related ligands in aqueous solution. Journal of Inorganic Biochemistry, 1993, 52, 275-286.	3.5	38
45	Oxovanadium(IV) complexes of mercaptocarboxylic acids. Journal of the Chemical Society Dalton Transactions, 1993, , 1849-1855.	1.1	20
46	Formation of tris-chelated vanadium(IV) complexes by interaction of oxovanadium(IV) with catecholamines, 3-(3,4-dihydroxyphenyl)alanine and related ligands in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1993, , 2057-2063.	1.1	19
47	EPR and proton ENDOR study of the solution equilibria of bis(2-ethyl-2-hydroxybutanoato(2-))oxochromate(V) and bis(2-hydroxy-2-methylbutanoato(2-))oxochromate(V). Inorganic Chemistry, 1993, 32, 578-581.	4.0	21
48	Coordination of Copper(II) to Polyaminopolycarboxylic Acids in Aqueous Solution. Journal of Coordination Chemistry, 1992, 25, 265-270.	2.2	6
49	Structural information on chromium(V) complexes of 1,2-diols in solution, as determined by isotropic and anisotropic proton ENDOR spectroscopy. Inorganic Chemistry, 1992, 31, 2404-2408.	4.0	25
50	Oxovanadium(IV) complex formation by simple sugars in aqueous solution. Journal of Inorganic Biochemistry, 1992, 45, 169-177.	3.5	38
51	Vanadium(IV) and oxovanadium(IV) complexes of hydroxamic acids and related ligands. Journal of Inorganic Biochemistry, 1992, 48, 279-287.	3.5	25
52	Complexation of oxovanadium(IV) by humic and tannic acids. Journal of Inorganic Biochemistry, 1990, 39, 109-115.	3.5	9
53	Reduction of chromate ions by glutathione tripeptide in the presence of sugar ligands. Journal of Inorganic Biochemistry, 1990, 39, 217-226.	3.5	42
54	Potentiometric and spectroscopic studies on oxovanadium(IV) complexes of salicylic acid and catechol and some derivatives. Journal of the Chemical Society Dalton Transactions, 1990, , 2903-2907.	1.1	24

#	Article	IF	CITATIONS
55	Proton electron nuclear double resonance spectra of oxovanadium(IV) complexes formed by salicylic and o-diphenolic ligands in aqueous solution. Journal of the Chemical Society Dalton Transactions, 1990, , 457.	1.1	3
56	Stabilization of the open-chain structure ofD-galacturonic acid in a dimeric complex with oxovanadium(IV). Journal of the Chemical Society Dalton Transactions, 1990, , 1997-1999.	1.1	17
57	Formation and structure of the tris(catecholato)vanadate(IV) complex in aqueous solution. Inorganic Chemistry, 1990, 29, 1586-1589.	4.0	63
58	Oxovanadium(IV) and copper(II) coordination by d-galacturonic and d-glucuronic acids. Carbohydrate Research, 1989, 188, 25-34.	2.3	38
59	Oxovanadium(IV) adsorption by plant roots. ESR identification of mobile and immobilized species. Journal of Inorganic Biochemistry, 1989, 35, 71-78.	3.5	2
60	In vitro interaction of mutagenic chromium(VI) with red blood cells. FEBS Letters, 1989, 257, 52-54.	2.8	39
61	Proton electron nuclear double resonance study of oxovanadium(IV) complexes of D-galacturonic and polygalacturonic acids. Journal of the Chemical Society Dalton Transactions, 1989, , 1283.	1.1	23
62	Proton electron nuclear double resonance study of oxovanadium(IV) complexes of o-diphenolic ligands. Journal of the Chemical Society Dalton Transactions, 1989, , 1289.	1.1	5
63	Reduction of chromium(VI) by D-galacturonic acid and formation of stable chromium(V) intermediates. Inorganica Chimica Acta, 1988, 153, 61-65.	2.4	44
64	Oxovanadium(iv) complexes of malic, succinic, and 2-mercaptosuccinic acids. Journal of Inorganic Biochemistry, 1988, 33, 99-109.	3.5	17
65	Chromium adsorption by plant roots and formation of long-lived Cr(V) species: An ecological hazard?. Journal of Inorganic Biochemistry, 1988, 34, 157-166.	3.5	64
66	Selective determination of vanadium(IV) and vanadium(V) in excised plant roots. Communications in Soil Science and Plant Analysis, 1988, 19, 355-366.	1.4	1
67	Oxidation of D-galacturonic acid by vanadium(V). Inorganica Chimica Acta, 1986, 120, 49-51.	2.4	16
68	Determination of vanadate(V) by conductometric anion chromatography. Journal of Chromatography A, 1985, 320, 450-454.	3.7	3
69	Copper(II) complexation by D-glucosamine. Spectroscopic and potentiometric studies. Inorganica Chimica Acta, 1985, 107, 45-48.	2.4	73
70	High-performance liquid chromatographic determination of formic acid in cleavage reactions of carbohydrates. Journal of Chromatography A, 1983, 268, 539-542.	3.7	5
71	The reduction of Fe(III) to Fe(II) and V(V) to V(IV) by polygalacturonic acid: A reduction and complexation mechanism of biochemical significance. Inorganica Chimica Acta, 1983, 80, L53-L55.	2.4	36
72	New aspects of the interaction between polysaccharides and metal ions in relation to the mineral nutrition of plant roots. Inorganica Chimica Acta, 1983, 79, 231-232.	2.4	7