
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1560958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleationâ^'Dissolutionâ^'Recrystallization:  A New Growth Mechanism for t-Selenium Nanotubes. Crystal Growth and Design, 2006, 6, 577-582.	3.0	192
2	Drug repurposing for COVID-19 via knowledge graph completion. Journal of Biomedical Informatics, 2021, 115, 103696.	4.3	102
3	Effectiveness of Combined Smartwatch and Social Media Intervention on Breast Cancer Survivor Health Outcomes: A 10-Week Pilot Randomized Trial. Journal of Clinical Medicine, 2018, 7, 140.	2.4	68
4	Prescription opioids are associated with higher mortality in patients diagnosed with sepsis: A retrospective cohort study using electronic health records. PLoS ONE, 2018, 13, e0190362.	2.5	58
5	Advancing Alzheimer's research: A review of big data promises. International Journal of Medical Informatics, 2017, 106, 48-56.	3.3	56
6	Using semantic predications to uncover drug–drug interactions in clinical data. Journal of Biomedical Informatics, 2014, 49, 134-147.	4.3	50
7	Using word embeddings to expand terminology of dietary supplements on clinical notes. JAMIA Open, 2019, 2, 246-253.	2.0	38
8	Synthesis and optical properties of cubic In2S3 hollow nanospheres. Materials Chemistry and Physics, 2007, 101, 362-366.	4.0	35
9	Mining Twitter to assess the determinants of health behavior toward human papillomavirus vaccination in the United States. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 225-235.	4.4	35
10	CancerBERT: a cancer domain-specific language model for extracting breast cancer phenotypes from electronic health records. Journal of the American Medical Informatics Association: JAMIA, 2022, 29, 1208-1216.	4.4	33
11	Discovering and identifying New York heart association classification from electronic health records. BMC Medical Informatics and Decision Making, 2018, 18, 48.	3.0	25
12	Exploring Eating Disorder Topics on Twitter: Machine Learning Approach. JMIR Medical Informatics, 2020, 8, e18273.	2.6	24
13	From Sheets to Fibers: A Novel Approach to <1>î³-AlOOH and <1>î³-Al ₂ O ₃ 1D Nanostructures. Journal of Nanoscience and Nanotechnology, 2006, 6, 1437-1440.	0.9	23
14	iDISK: the integrated Dletary Supplements Knowledge base. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 539-548.	4.4	23
15	Electronic Health Record Phenotypes for Precision Medicine: Perspectives and Caveats From Treatment of Breast Cancer at a Single Institution. Clinical and Translational Science, 2018, 11, 85-92.	3.1	17
16	ALOHA: developing an interactive graph-based visualization for dietary supplement knowledge graph through user-centered design. BMC Medical Informatics and Decision Making, 2019, 19, 150.	3.0	16
17	Exploiting Literature-derived Knowledge and Semantics to Identify Potential Prostate Cancer Drugs. Cancer Informatics, 2014, 13s1, CIN.S13889.	1.9	15
18	A cascaded approach for Chinese clinical text de-identification with less annotation effort. Journal of Biomedical Informatics, 2017, 73, 76-83.	4.3	15

#	Article	IF	CITATIONS
19	Detecting clinically relevant new information in clinical notes across specialties and settings. BMC Medical Informatics and Decision Making, 2017, 17, 68.	3.0	15
20	Automatic methods to extract New York heart association classification from clinical notes. , 2017, 2017, 1296-1299.		14
21	Using natural language processing methods to classify use status of dietary supplements in clinical notes. BMC Medical Informatics and Decision Making, 2018, 18, 51.	3.0	14
22	Evaluating Term Coverage of Herbal and Dietary Supplements in Electronic Health Records. AMIA Annual Symposium proceedings, 2015, 2015, 1361-70.	0.2	13
23	Identifying Cardiomegaly in ChestX-ray8 Using Transfer Learning. Studies in Health Technology and Informatics, 2019, 264, 482-486.	0.3	13
24	Social and Behavioral Determinants of Health in the Era of Artificial Intelligence with Electronic Health Records: A Scoping Review. Health Data Science, 2021, 2021, .	2.3	12
25	Detecting associations between dietary supplement intake and sentiments within mental disorder tweets. Health Informatics Journal, 2020, 26, 803-815.	2.1	11
26	Deep learning approaches for extracting adverse events and indications of dietary supplements from clinical text. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 569-577.	4.4	11
27	Analysis of Twitter to Identify Topics Related to Eating Disorder Symptoms. , 2019, 2019, .		10
28	WGCN: Graph Convolutional Networks with Weighted Structural Features. , 2021, , .		10
29	Mining Biomedical Literature to Explore Interactions between Cancer Drugs and Dietary Supplements. AMIA Summits on Translational Science Proceedings, 2015, 2015, 69-73.	0.4	10
30	Discovering novel drug-supplement interactions using SuppKG generated from the biomedical literature. Journal of Biomedical Informatics, 2022, 131, 104120.	4.3	9
31	Classifying the lifestyle status for Alzheimer's disease from clinical notes using deep learning with weak supervision. BMC Medical Informatics and Decision Making, 2022, 22, .	3.0	8
32	Evaluating active learning methods for annotating semantic predications. JAMIA Open, 2018, 1, 275-282.	2.0	7
33	Deep learning models in detection of dietary supplement adverse event signals from Twitter. JAMIA Open, 2021, 4, ooab081.	2.0	7
34	Evaluation of Herbal and Dietary Supplement Resource Term Coverage. Studies in Health Technology and Informatics, 2015, 216, 785-9.	0.3	7
35	Term Coverage of Dietary Supplements Ingredients in Product Labels. AMIA Annual Symposium proceedings, 2016, 2016, 2053-2061.	0.2	7
36	Comparing Existing Resources to Represent Dietary Supplements. AMIA Summits on Translational Science Proceedings, 2018, 2017, 207-216.	0.4	7

#	Article	IF	CITATIONS
37	Assessing the enrichment of dietary supplement coverage in the Unified Medical Language System. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1547-1555.	4.4	6
38	Mining Adverse Events of Dietary Supplements from Product Labels by Topic Modeling. Studies in Health Technology and Informatics, 2017, 245, 614-618.	0.3	6
39	Natural Language Processing Methods to Extract Lifestyle Exposures for Alzheimer's Disease from Clinical Notes. , 2020, , .		6
40	Prototyping an Interactive Visualization of Dietary Supplement Knowledge Graph. , 2018, 2018, 1649-1652.		5
41	Detecting Signals of Associations Between Dietary Supplement Use and Mental Disorders from Twitter. , 2018, 2018, 53-54.		5
42	Natural language processing. , 2021, , 123-148.		5
43	Classification of use status for dietary supplements in clinical notes. , 2016, 2016, 1054-1061.		4
44	Evaluating automatic methods to extract patients' supplement use from clinical reports. , 2017, 2017, 1258-1261.		4
45	A fast, resource efficient, and reliable rule-based system for COVID-19 symptom identification. JAMIA Open, 2021, 4, ooab070.	2.0	4
46	When text simplification is not enough: could a graph-based visualization facilitate consumers' comprehension of dietary supplement information?. JAMIA Open, 2021, 4, ooab026.	2.0	4
47	Detecting Signals of Dietary Supplement Adverse Events from the CFSAN Adverse Event Reporting System (CAERS). AMIA Summits on Translational Science Proceedings, 2019, 2019, 258-266.	0.4	4
48	Comparing NLP Systems to Extract Entities ofÂEligibility Criteria in Dietary Supplements Clinical Trials Using NLP-ADAPT. Lecture Notes in Computer Science, 2020, , 67-77.	1.3	3
49	Classifying Supplement Use Status in Clinical Notes. AMIA Summits on Translational Science Proceedings, 2017, 2017, 493-501.	0.4	3
50	Estimating New York Heart Association Classification for Heart Failure Patients from Information in the Electronic Health Record. , 2018, , .		2
51	Introduction: selected extended articles from the 2nd International Workshop on Semantics-Powered Data Analytics (SEPDA 2017). BMC Medical Informatics and Decision Making, 2018, 18, 56.	3.0	2
52	Effectiveness of Combined Smartwatch and Social Media Intervention on Breast Cancer Survivor Outcomes. Medicine and Science in Sports and Exercise, 2018, 50, 137.	0.4	2
53	A conversational agent system for dietary supplements use. BMC Medical Informatics and Decision Making, 2022, 22, .	3.0	2
54	Automated identification of relevant new information in clinical narrative. , 2012, , .		1

#	Article	IF	CITATIONS
55	Selected articles from the Third International Workshop on Semantics-Powered Data Analytics (SEPDA 2018). BMC Medical Informatics and Decision Making, 2019, 19, 148.	3.0	1
56	Normalizing Dietary Supplement Product Names Using the RxNorm Model. Studies in Health Technology and Informatics, 2019, 264, 408-412.	0.3	1
57	Selected articles from the Fourth International Workshop on Semantics-Powered Data Mining and Analytics (SEPDA 2019). BMC Medical Informatics and Decision Making, 2020, 20, 315.	3.0	Ο
58	A Prototype Conversational Agent for Dietary Supplements. , 2020, , .		0