
Yury O Solyaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1560921/publications.pdf Version: 2024-02-01

YUDY O SOLVAEV

#	Article	IF	CITATIONS
1	Revisiting bending theories of elastic gradient beams. International Journal of Engineering Science, 2018, 126, 1-21.	2.7	40
2	Design of the corrugated-core sandwich panel for the arctic rescue vehicle. Composite Structures, 2017, 160, 1007-1019.	3.1	34
3	Multiscale modelling of aluminium-based metal–matrix composites with oxide nanoinclusions. Computational Materials Science, 2016, 116, 62-73.	1.4	33
4	Mechanical behavior of porous Si3N4 ceramics manufactured with 3D printing technology. Journal of Materials Science, 2018, 53, 4796-4805.	1.7	32
5	On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	0.7	29
6	Comparison between the Mori-Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity. Mechanics of Materials, 2018, 122, 133-144.	1.7	27
7	Fabrication of porous silicon nitride ceramics using binder jetting technology. IOP Conference Series: Materials Science and Engineering, 2016, 140, 012023.	0.3	26
8	Three-phase model of particulate composites in second gradient elasticity. European Journal of Mechanics, A/Solids, 2019, 78, 103853.	2.1	25
9	Electric field, strain and inertia gradient effects on anti-plane wave propagation in piezoelectric materials. Journal of Sound and Vibration, 2021, 494, 115898.	2.1	24
10	Continuum micro-dilatation modeling of auxetic metamaterials. International Journal of Solids and Structures, 2018, 132-133, 188-200.	1.3	23
11	On the formulation of elastic and electroelastic gradient beam theories. Continuum Mechanics and Thermodynamics, 2019, 31, 1601-1613.	1.4	21
12	On a combined thermal/mechanical performance of a foam-filled sandwich panels. International Journal of Engineering Science, 2019, 134, 66-76.	2.7	21
13	On the dependence of standard and gradient elastic material constants on a field of defects. Mathematics and Mechanics of Solids, 2020, 25, 35-45.	1.5	21
14	Binder Jetting of Si ₃ N ₄ Ceramics with Different Porosity. Solid State Phenomena, 0, 269, 37-50.	0.3	20
15	Numerical predictions for the effective size-dependent properties of piezoelectric composites with spherical inclusions. Composite Structures, 2018, 202, 1099-1108.	3.1	20
16	Design of the corrugated-core sandwich panel with external active cooling system. Composite Structures, 2018, 188, 278-286.	3.1	18
17	Direct observation of plastic shear strain concentration in the thick GLARE laminates under bending loading. Composites Part B: Engineering, 2021, 224, 109145.	5.9	18
18	On the elastic wedge problem within simplified and incomplete strain gradient elasticity theories. International Journal of Solids and Structures, 2022, 239-240, 111433.	1.3	18

YURY O SOLYAEV

#	Article	IF	CITATIONS
19	On Remarkable Loss Amplification Mechanism in Fiber Reinforced Laminated Composite Materials. Applied Composite Materials, 2014, 21, 179-196.	1.3	17
20	Bending problems in the theory of elastic materials with voids and surface effects. Mathematics and Mechanics of Solids, 2018, 23, 787-804.	1.5	16
21	Optimization of Thermal Protection Panels Subjected to Intense Heating and Mechanical Loading. Lobachevskii Journal of Mathematics, 2019, 40, 887-895.	0.1	16
22	New approach to failure of pre-cracked brittle materials based on regularized solutions of strain gradient elasticity. Engineering Fracture Mechanics, 2021, 258, 108080.	2.0	16
23	Topology optimization of the wick geometry in a flat plate heat pipe. International Journal of Heat and Mass Transfer, 2019, 128, 239-247.	2.5	15
24	Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory. Continuum Mechanics and Thermodynamics, 2019, 31, 1099-1107.	1.4	15
25	Dilatation gradient elasticity theory. European Journal of Mechanics, A/Solids, 2021, 88, 104258.	2.1	15
26	Influence of mean distance between fibers on the effective gas thermal conductivity in highly porous fibrous materials. International Journal of Heat and Mass Transfer, 2017, 109, 511-519.	2.5	13
27	Anti-plane inclusion problem in the second gradient electroelasticity theory. International Journal of Engineering Science, 2019, 144, 103129.	2.7	13
28	Elasto-plastic behavior and failure of thick GLARE laminates under bending loading. Composites Part B: Engineering, 2020, 200, 108302.	5.9	13
29	Trefftz collocation method for twoâ€dimensional strain gradient elasticity. International Journal for Numerical Methods in Engineering, 2021, 122, 823-839.	1.5	13
30	Static and dynamic response of sandwich beams with lattice and pantographic cores. Journal of Sandwich Structures and Materials, 2022, 24, 1076-1098.	2.0	13
31	Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers. Applied Composite Materials, 2019, 26, 389-408.	1.3	12
32	Mechanical properties of a metallic composite material based on an aluminum alloy reinforced by dispersed silicon carbide particles. Russian Metallurgy (Metally), 2015, 2015, 790-794.	0.1	11
33	Identification of gradient elasticity parameters based on interatomic interaction potentials accounting for modified Lorentz-Berthelot rules. Physical Mesomechanics, 2017, 20, 392-398.	1.0	11
34	Self-consistent assessments for the effective properties of two-phase composites within strain gradient elasticity. Mechanics of Materials, 2022, 169, 104321.	1.7	10
35	Study of Porous Ceramic Based on Silicon Nitride Prepared Using Three-Dimensional Printing Technology. Refractories and Industrial Ceramics, 2017, 57, 600-604.	0.2	9
36	On the possibility of steady-state solutions application to describe a thermal state of parts fabricated by selective laser sintering. High Temperature, 2017, 55, 731-736.	0.1	9

YURY O SOLYAEV

#	Article	IF	CITATIONS
37	Overmelting and closing of thin horizontal channels in AlSi10Mg samples obtained by selective laser melting. Additive Manufacturing, 2019, 30, 100847.	1.7	9
38	Pure bending of a piezoelectric layer in second gradient electroelasticity theory. Acta Mechanica, 2019, 230, 4197-4211.	1.1	8
39	Generalized Einstein's and Brinkman's solutions for the effective viscosity of nanofluids. Journal of Applied Physics, 2020, 128, .	1.1	8
40	Analytical estimates of the contact zone area for a pressurized flat-oval cylindrical shell placed between two parallel rigid plates. Meccanica, 2018, 53, 3831-3838.	1.2	7
41	Application of optimization methods for finding equilibrium states of two-dimensional crystals. Computational Mathematics and Mathematical Physics, 2016, 56, 2001-2010.	0.2	6
42	Intermediate layer formation between inclusion and matrix during synthesis of unidirectional fibrous composite. , 2014, , .		5
43	Simulation of the mechanical properties of nanostructured porous ceramics. Russian Metallurgy (Metally), 2013, 2013, 272-281.	0.1	4
44	Microstructure and mechanical properties of silicon carbide ceramics reinforced with multi-walled carbon nanotubes. IOP Conference Series: Materials Science and Engineering, 2016, 124, 012142.	0.3	4
45	Semi-Inverse Solution of a Pure Beam Bending Problem in Gradient Elasticity Theory: The Absence of Scale Effects. Doklady Physics, 2018, 63, 161-164.	0.2	4
46	Recent Problems of Heat-Transfer Simulation in Technological Processes of Selective Laser Melting and Fusion. High Temperature, 2019, 57, 916-943.	0.1	4
47	Impact behavior of a stiffened shell structure with optimized GFRP corrugated sandwich panel skins. Composite Structures, 2020, 248, 112479.	3.1	4
48	Gradient models of moving heat sources for powder bed fusion applications. International Journal of Heat and Mass Transfer, 2022, 196, 123221.	2.5	4
49	Approximate Analytical Solution for a Unilateral Contact Problem with Heavy Elastica. Lobachevskii Journal of Mathematics, 2019, 40, 1010-1015.	0.1	3
50	Manufacture of the Transceiver Housing for an Active Phased Array Antenna with Built-In Cooling Channels by Selective Laser Melting. Russian Engineering Research, 2019, 39, 785-788.	0.2	3
51	Refined Stress Analysis in Applied Elasticity Problems Accounting for Gradient Effects. Doklady Physics, 2019, 64, 482-486.	0.2	3
52	METHODS FOR PREDICTING EFFECTIVE THERMOELASTIC PROPERTIES OF COMPOSITE CERAMICS REINFORCED WITH CARBON NANOTUBES. International Journal of Nanomechanics Science and Technology, 2012, 3, 141-154.	0.5	2
53	IDENTIFICATION OF KINETIC PARAMETERS OF THE MODEL OF INTERPHASE LAYER GROWTH IN A FIBROUS COMPOSITE. Composites: Mechanics, Computations, Applications, 2016, 7, 175-187.	0.2	2
54	Effect of Thin Polymer Coatings on the Mechanical Properties of Steel Plates. Russian Metallurgy (Metally), 2017, 2017, 1170-1175.	0.1	2

YURY O SOLYAEV

#	Article	IF	CITATIONS
55	Mechanistic Model of Generalized Non-antisymmetrical Electrodynamics. Advanced Structured Materials, 2019, , 379-394.	0.3	2
56	Influence of Alumina Nanofibers Sintered by the Spark Plasma Method on Nickel Mechanical Properties. Metals, 2021, 11, 548.	1.0	2
57	MECHANICAL PROPERTIES OF Si3N4-BASED COMPOSITE CERAMICS WITH NANOSIZED POROSITY. Nanoscience and Technology, 2017, 8, 347-357.	0.6	2
58	Stress Concentration Near Stiff Cylindrical Inclusions under Anti-Plane Shear Loading. Doklady Physics, 2020, 65, 390-395.	0.2	2
59	Refined Analysis of Piezoelectric Microcantilevers in Gradient Electroelasticity Theory. Lobachevskii Journal of Mathematics, 2020, 41, 2076-2082.	0.1	1
60	ESHELBY INTEGRAL FORMULAS IN SECOND GRADIENT ELASTICITY. Nanoscience and Technology, 2020, 11, 99-107.	0.6	1
61	On the Dispersion Relations for the Anti-Plane Surface Wave in the Second Gradient Electroelasticity. Lobachevskii Journal of Mathematics, 2021, 42, 1935-1943.	0.1	1
62	Apparent Bending and Tensile Stiffness of Lattice Beams with Triangular and Diamond Structure. Advanced Structured Materials, 2020, , 431-442.	0.3	1
63	Identification method of gradient models parameters of inhomogeneous structures based on discrete atomistic simulations. PNRPU Mechanics Bulletin, 2014, , 89-111.	0.1	1
64	EXPERIMENTAL INVESTIGATION AND MODELING OF THE THERMOCYCLING EFFECT ON THE MECHANICAL PROPERTIES OF THE CFRP. Composites: Mechanics, Computations, Applications, 2015, 6, 279-291.	0.2	1
65	On the Relations between Direct and Energy Based Homogenization Approaches in Second Gradient Elasticity. Advanced Structured Materials, 2020, , 443-457.	0.3	1
66	AN APPROACH TO MODELING OF DEFORMATION OF MEDIA WITH POROSITIES OF DIFFERENT SCALES. Composites: Mechanics, Computations, Applications, 2013, 4, 163-186.	0.2	0
67	An identification algorithm of model kinetic parameters of the interfacial layer growth in fiber composites. IOP Conference Series: Materials Science and Engineering, 2016, 124, 012071.	0.3	0
68	Evaluation of the Load Bearing Capacity of the Honeycomb Core Sandwich Panels with Face Sheets Made of Metal Matrix Composite under Static and Dynamic Loading. Russian Aeronautics, 2020, 63, 357-361.	0.1	0
69	MODELING OF ANOMALOUS MECHANICAL PROPERTIES OF POLYURETHANE MODIFIED BY CARBON SINGLE-WALL NANOTUBES. International Journal of Nanomechanics Science and Technology, 2011, 2, 71-83.	0.5	0
70	PREDICTION OF THERMOPHYSICAL AND THERMOMECHANICAL PROPERTIES OF HIGH-TEMPERATURE LAYERED COMPOSITES BASED ON THE Al2O3–Cr SYSTEM. International Journal of Nanomechanics Science and Technology, 2015, 6, 17-30.	0.5	0
71	ON ACCOUNT OF SCALE EFFECTS IN THE SIMULATION OF MECHANICAL AND TRIBOLOGICAL PROPERTIES OF TWO-PHASE MICRO- AND NANOMODIFIED POLYMER COATINGS. PNRPU Mechanics Bulletin, 2015, , 36-54.	0.1	0