Eiji Kita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1560758/publications.pdf

Version: 2024-02-01

113 papers	1,464 citations	19 h-index	395702 33 g-index
116	116	116	1598
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. Journal Physics D: Applied Physics, 2010, 43, 474011.	2.8	105
2	Extraordinarily large perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite CoxFe3â^'xO4(001) (xâ \in %=â \in %0.75, 1.0) thin films. Applied Physics Letters, 2013, 103, .	3.3	87
3	Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction. Scientific Reports, 2017, 7, 13216.	3.3	86
4	Mechanical alloying process of Feâ€Cr powders studied by magnetic measurements. Journal of Applied Physics, 1993, 73, 429-433.	2.5	57
5	Perpendicular magnetic anisotropy in CoFe2O4(001) films epitaxially grown on MgO(001). Journal of Applied Physics, $2011, 109, .$	2.5	56
6	Magnetic properties of iron nitride thin films with high corrosion-resistance. IEEE Transactions on Magnetics, 1986, 22, 591-593.	2.1	52
7	Iron Vacancy Ordered Î ³ -Fe2O3(001) Epitaxial Films: The Crystal Structure and Electrical Resistivity. Journal of the Physical Society of Japan, 2006, 75, 054708.	1.6	51
8	Heating characteristics of ferromagnetic iron oxide nanoparticles for magnetic hyperthermia. Journal of Applied Physics, 2010, 107, .	2.5	50
9	Recording tapes using iron nitride fine powder. IEEE Transactions on Magnetics, 1981, 17, 3026-3028.	2.1	48
10	Magnetic properties of iron-nitride particles prepared with gas evaporation method. IEEE Transactions on Magnetics, 1983, 19, 1629-1631.	2.1	40
11	Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films. Journal of Applied Physics, 2014, 115, .	2.5	36
12	Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films. AIP Advances, 2015, 5, .	1.3	36
13	Magnetoelectric Effect in Magnetic Materials. Acta Physica Polonica A, 1992, 81, 431-466.	0.5	36
14	The enhanced magnetic moment and structural study of Fe/MgO multilayered films. Journal of Applied Physics, 1988, 64, 5763-5765.	2.5	34
15	Cetuximab delivery and antitumor effects are enhanced by mild hyperthermia in a xenograft mouse model of pancreatic cancer. Cancer Science, 2016, 107, 514-520.	3.9	26
16	A Low Temperature Phase Transition in Yttrium Iron Garnet (YIG). Journal of the Physical Society of Japan, 1987, 56, 452-455.	1.6	25
17	Structural Phase Transition and Dielectric Properties of ZnCr 2 O 4. Ferroelectrics, 2002, 268, 327-332.	0.6	24
18	Magnetic Equation of State in a Substitutionally Random Ferromagnet. EuxSr1-xS. Journal of the Physical Society of Japan, 1982, 51, 2746-2754.	1.6	21

#	Article	IF	CITATIONS
19	Dielectric Anomaly of ZnCr2O4at Antiferromagnetic Transition. Journal of the Physical Society of Japan, 2002, 71, 916-921.	1.6	20
20	Large negative uniaxial magnetic anisotropy in highly distorted Co-ferrite thin films. Applied Physics Letters, 2019, 114, 092408.	3.3	20
21	Studies on spintronics-related thin films using synchrotron-radiation-based Mössbauer spectroscopy. Hyperfine Interactions, 2013, 217, 127-135.	0.5	18
22	Magnetic Anisotropies of Fe/MgO Multilayers Determined by Submillimeter Wave FMR. Journal of the Physical Society of Japan, 1993, 62, 4467-4473.	1.6	17
23	Characteristic creep behavior of nanocrystalline metals found for high-density gold. Physical Review B, 2002, 66, .	3.2	17
24	Electron theory of perpendicular magnetic anisotropy of Co-ferrite thin films. AIP Advances, 2014, 4, .	1.3	17
25	$M\tilde{A}\P$ ssbauer Effect and Dielectric Constant of a YIG Single Crystal and Possibility of a Low Temperature Structural Transition. Journal of the Physical Society of Japan, 1991, 60, 294-299.	1.6	15
26	Control of Magnetic Anisotropy by Lattice Distortion in Cobalt Ferrite Thin Film. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	15
27	Atomic Structure and Electron Magnetic Circular Dichroism of Individual Rock Salt Structure Antiphase Boundaries in Spinel Ferrites. Advanced Functional Materials, 2021, 31, 2008306.	14.9	15
28	Ni and NiFe nanocrystalline films prepared with gas-deposition method. IEEE Transactions on Magnetics, 1996, 32, 4487-4489.	2.1	13
29	Structural and magnetic transitions inPbV6O11. Physical Review B, 2001, 64, .	3.2	13
30	Study of Perpendicular Magnetic Anisotropy and Magneto-Elastic Coupling in the First Principles and Phenomenology. IEEE Transactions on Magnetics, 2013, 49, 3269-3272.	2.1	13
31	Magnetic fluid with high dispersion and heating performance using nano-sized Fe3O4 platelets. Journal of Magnetism and Magnetic Materials, 2016, 398, 200-204.	2.3	13
32	Calorimetric Study of Critical Phenomena in the Diluted Random Ferromagnet, EuxSr1-xS. Journal of the Physical Society of Japan, 1988, 57, 3381-3390.	1.6	12
33	Characterization and Determination of Elastic Property of High-Density Nanocrystalline Gold Prepared by Gas-Deposition Method. Materials Transactions, 2003, 44, 94-103.	1.2	12
34	DC magnetoelectric effect measurements by a squid magnetometer. Ferroelectrics, 1994, 162, 397-400.	0.6	11
35	Specific Heat of NaV6O11Single Crystals. Journal of the Physical Society of Japan, 1998, 67, 1303-1305.	1.6	11
36	Synthesis of & Synthe	1.2	11

#	Article	IF	CITATIONS
37	Dependences of Specific Loss Power on Magnetic Field and Frequency in Elongated Platelet \$gamma\$-Fe\$_{2}\$O\$_{3}\$ Particles Using Hysteresis-Loss Heating. IEEE Transactions on Magnetics, 2013, 49, 4756-4760.	2.1	11
38	Magnetic Symmetry of Yttrium Iron Garnet (YIG) in the Low-Temperature Phase. Journal of the Physical Society of Japan, 1989, 58, 1145-1148.	1.6	10
39	Magnetic properties of rare-earth-doped GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2874-2877.	0.8	10
40	Structural and magnetic properties of Co doped GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2458-2462.	0.8	10
41	Antiferromagnetic interlayer coupling through a thin MgO layer in Î ³ -Fe2O3â^•MgOâ^•Fe(001) multilayers. Journal of Applied Physics, 2007, 101, 09D101.	2.5	10
42	Magnetic properties of rare-earth transition-metal alloy films prepared by oblique incidence method. IEEE Transactions on Magnetics, 1983, 19, 1650-1652.	2.1	9
43	Magnetic properties of Fe-Co nitride thin films. IEEE Transactions on Magnetics, 1987, 23, 3630-3632.	2.1	9
44	Atomic-scale structure of GdxFe100 \hat{a} ("x melt-quenched amorphous alloys (x = 22, 33, 56) by X-ray diffraction. Physica Status Solidi A, 1996, 157, 365-372.	1.7	9
45	Morphology and Magnetic Properties of Platelet γ-Fe ₂ O ₃ Particles. Materials Transactions, 2012, 53, 1711-1715.	1.2	9
46	Ferromagnetic Resonance in Magnetite Thin Films. IEEE Transactions on Magnetics, 2014, 50, 1-3.	2.1	9
47	Effect of Synthesis Method on Particle Size and Magnetic and Structural Properties of Co–Ni Ferrites. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	9
48	Large-scale micromagnetics simulations with dipolar interaction using all-to-all communications. AIP Advances, 2016, 6, 056405.	1.3	9
49	Possibility of ferroelectricity in Yttrium iron garnet single crystal. Ferroelectrics, 1989, 96, 251-255.	0.6	8
50	Symmetry Breaking in a Frustrated Heisenberg Spin System, ZnCr2O4: II. Neutron Scattering Measurements. Journal of the Physical Society of Japan, 2006, 75, 064710.	1.6	8
51	Mössbauer study on the antiferromagnetic FeO synthesized under high pressure. Hyperfine Interactions, 2012, 205, 135-138.	0.5	8
52	Dynamic Hysteresis Measurement of Magnetic Nanoparticle Suspensions in Parallel and Perpendicular DC Magnetic Fields. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	8
53	Magnetic properties of alternately evaporated Fe-Gd films. IEEE Transactions on Magnetics, 1985, 21, 1942-1944.	2.1	7
54	Perpendicular magnetic anisotropy of Coâ^•Rh(111) distorted superlattices. Journal of Applied Physics, 2005, 97, 016103.	2.5	7

#	Article	IF	CITATIONS
55	Study of the heating characteristics and mechanisms of magnetic nanoparticles over a wide range of frequencies and amplitudes of an alternating magnetic field. Journal of Physics: Conference Series, 2014, 521, 012014.	0.4	7
56	Magnetic Properties of Spinel Ferrite Thin Films Grown by Reactive Sputtering. Materials Transactions, 2016, 57, 777-780.	1.2	7
57	Magnetic anisotropy in spherical Fe16N2 core–shell nanoparticles determined by torque measurements. AIP Advances, 2017, 7, 056212.	1.3	7
58	Crystallization Process and Magnetic Properties of Fe _{100−<l></l>} </td <td>0.4</td> <td>7</td>	0.4	7
59	The Second Order Magnetoelectric Effect in a High Purity YIG (Yttrium Iron Garnet) Single Crystal. Journal of the Physical Society of Japan, 1991, 60, 288-293.	1.6	6
60	Interface Mixing in Fe/LiF Multilayered Thin Film. Journal of the Physical Society of Japan, 1992, 61, 35-38.	1.6	6
61	Magnetic properties of Co/MgO multilayered films. Journal of Applied Physics, 1993, 73, 6350-6352.	2.5	6
62	Magnetoelectric effect of yttrium iron garnet (YIG) at low temperature. Ferroelectrics, 1994, 161, 73-76.	0.6	6
63	Symmetry Breaking in a Frustrated Heisenberg Spin System, ZnCr2O4: I. Magnetic Measurements. Journal of the Physical Society of Japan, 2006, 75, 064709.	1.6	6
64	Ferromagnetism in Co-doped TiO2 single crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4127-4130.	0.8	6
65	On the Magnetic Symmetry of the Low Temperature Phase of ZnCr2O4. Journal of the Physical Society of Japan, 2007, 76, 064710.	1.6	6
66	Magnetotransport properties in epitaxial Fe3O4(001) thin films with current perpendicular to the plane geometry. Journal of Applied Physics, 2013, 113, 17B104.	2.5	6
67	Optical transmissions in metal/insulator (Fe/MgF2) multilayered thin films. Journal of Applied Physics, 1995, 78, 5198-5200.	2.5	5
68	Room temperature magnetoresistance in a polyimide-Co granular film synthesized by vapor deposition polymerization. Applied Physics Letters, 2012, 101, .	3.3	5
69	Characterization of Spinel-Structured Iron Oxide Particles Synthesized by Heating & amp; alpha; -Fe< sub> 2< /sub> 0< sub> 3< /sub> Platelets in Tetra-Ethylene Glycol. Materials Transactions, 2013, 54, 222-224.	1.2	5
70	Large Negative Uniaxial Magnetic Anisotropy in Epitaxially Strained Nickel Ferrite Films. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	5
71	Magnetic Equations of State of Heisenberg Ferromagnets, EuS and Its Sr-Diluted Derivatives, in a High Field Region. Journal of the Physical Society of Japan, 1995, 64, 4101-4104.	1.6	5
72	Random magnetic anisotropy in isotropic nanocrystalline composite permanent magnets. Journal of Applied Physics, 2011, 109, 083904.	2.5	4

#	Article	IF	CITATIONS
73	Magnetic and Electrical Properties of Epitaxial NiFe ₂ O ₄ (001) Films Fabricated by Reactive Sputtering. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	4
74	Structure and Magnetic Properties of Co–Ni Spinel Ferrite Particles Synthesized via Co-Precipitation and Hydrothermal Treatment at Different Temperatures. Materials Transactions, 2019, 60, 485-489.	1.2	4
75	Effect of lattice mismatch on magnetic properties of acicular spinel iron oxide particles with crystallized cobalt ferrite layer. Journal of Magnetism and Magnetic Materials, 2020, 510, 166932.	2.3	4
76	Mössbauer effect of magnetoelectric Y ₃ Fe ₅ O ₁₂ (YIG) single crystal prepared by liquid phase epitaxy. Ferroelectrics, 1994, 161, 141-146.	0.6	3
77	Phase Transitions at High Temperature in Intercalation Compounds Mn1/4NbS2and Mn1/4TaS2. Journal of the Physical Society of Japan, 1997, 66, 1698-1701.	1.6	3
78	Effect of calculation conditions on the numerical simulation of magnetic materials with random magnetic anisotropy. Journal of the Korean Physical Society, 2013, 63, 768-772.	0.7	3
79	Spin Hall magnetoresistance at the interface between platinum and cobalt ferrite thin films with large magnetic anisotropy. AIP Advances, 2017, 7, .	1.3	3
80	Enhanced Anisotropy in Tetragonalized (Cu,Co)Fe ₂ O ₄ Particles via the Jahn–Teller Effect of Cu ²⁺ Ions. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	3
81	Dynamic Magnetization Properties of Platelet Ferromagnetic Nanoparticles and Their Heat Generation Injected in Tumors of Mice. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	3
82	Magnetic Properties of Tetragonal Cobalt Manganese Ferrite Particles Prepared Using the Molten Salt Method. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	3
83	Atomic Structure and Magnetic Property of Melt-Spun La-Fe Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1990, 54, 125-130.	0.4	3
84	Effect of static magnetic field bias on dynamic hysteresis loops of a magnetic nanoparticle suspension. Japanese Journal of Applied Physics, 2022, 61, 065003.	1.5	3
85	Magnetic Properties of Iron Nitride Thin Films with High Corrosion Resistance. IEEE Translation Journal on Magnetics in Japan, 1987, 2, 575-576.	0.1	2
86	Magnetization control for bit pattern formation of spinel ferromagnetic oxides by Kr ion implantation. Journal of Applied Physics, 2014, 115, 178907.	2.5	2
87	Characterization of Spinel-Structured Iron Oxide Nanoparticles Synthesized by Heating of & amp; alpha; -FeOOH Platelets in Tetra-Ethylene Glycol. Materials Transactions, 2014, 55, 813-817.	1.2	2
88	Effect of Copper Substitution on Fe ₃ O ₄ Particles Prepared via Coprecipitation and Flux Methods. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	2
89	Surface Observation and Magnetism of Oil-Extracted Botryococcus braunii Residues before and after Carbonization. Journal of Carbon Research, 2018, 4, 10.	2.7	2
90	Structure and Magnetic Properties of Co-Ni Spinel Ferrite Particles Synthesized via Co-Precipitation and Hydrothermal Treatment at Different Temperatures. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2019, 83, 207-211.	0.4	2

#	Article	IF	CITATIONS
91	Magnetic Properties of Amorphous Fe-Nd Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1988, 52, 251-258.	0.4	2
92	Quantity Determination of Magnetic Particles Intravenously Administered to Mice Tissues Using Magnetization Measurements. IEEE Transactions on Magnetics, 2015, 51, 1-6.	2.1	1
93	Reconstruction of magnetic domain structure using the reverse Monte Carlo method with an extended Fourier image. Journal of Applied Physics, 2015, 117, 17D149.	2.5	1
94	Magnetic Properties of Epitaxial Barium Hexaferrite (0001) Thin Films Deposited by Radio Frequency Magnetron Sputtering. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	1
95	Topotactic crystal structure transformation from spinel ferrite to wýstite in epitaxial Fe3O4 films via Kr ion irradiation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 033403.	2.1	1
96	Site Preference of Fe Ion in SrV6-xFexO11. Journal of the Physical Society of Japan, 2009, 78, 054703.	1.6	1
97	Magnetic Properties of Fe Nanocrystals Prepared by the GDM. Journal of the Magnetics Society of Japan, 1997, 21, 413-416.	0.4	1
98	Magnetic Properties of Insoluble Binary System Thin Film. IEEE Translation Journal on Magnetics in Japan, 1985, 1, 1095-1096.	0.1	0
99	93Nb and63Cu NMR studies of superconducting Nb/Cu multilayers. European Physical Journal D, 1996, 46, 743-744.	0.4	0
100	Millimeter Wave FMR of Fe/MgO and Fe/MgF2Multilayers Using Strip-Line Technique. Journal of the Physical Society of Japan, 1997, 66, 3272-3276.	1.6	0
101	Neutron and X-Ray Small Angle Scattering Studies of Rapidly Quenched La-Fe Alloys. Journal of the Physical Society of Japan, 1997, 66, 451-454.	1.6	0
102	Structural and magnetic properties of Er doped GaN., 0,,.		0
103	Electronic States and Magnetic Coupling in Fe/Fe3O4 Junctions. Materials Research Society Symposia Proceedings, 2011, 1292, 41.	0.1	0
104	Annealing Effects on Tunnel Magnetoresistance in Polyimide-Co Granular Films. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	0
105	Synthesis and Morphology of Platelet α-FeOOH and γ-Fe2O3 Nanoparticles for Cancer Therapy Using Hysteresis-Loss Heating. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2014, 61, S125-S128.	0.2	0
106	Synthesis and Characterization of Iron Oxide Particles for Medical Applications. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2014, 61, S117-S120.	0.2	0
107	Liquid phase synthesis of spinel-structured ferrimagnetic iron oxide nanoparticles for magnetic hyperthermia., 2015,,.		0
108	Epitaxial Growth of Co _{0.75} Fe _{2.25} O ₄ /NiO Bilayer on MgO(001) Substrate. IEEE Transactions on Magnetics, 2015, 51, 1-3.	2.1	0

Ειμ Κιτα

#	Article	IF	CITATIONS
109	Effect of Reaction Temperature on Particle Size of Iron Oxide Nanoparticles via Heating of Platelet & lt;inline-formula> & lt;tex-math notation="LaTeX">\$ {alpha }\$ & lt;/tex-math>-FeOOH in Tetraethylene Glycol. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	0
110	Magnetic Properties of Cobalt Ferrite (001) Films Grown on Spinel-Type Buffer Layers. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	0
111	Effect of etching on spin canting in hydrothermally synthesized Co-Ni ferrite particles. Hyperfine Interactions, 2020, 241, 1.	0.5	O
112	Magnetic Properties of Co Particles Alternately Electro-deposited into Micropores of Alumite. Journal of the Magnetics Society of Japan, 1999, 23, 655-657.	0.4	0
113	Coercive force of Co–Ni–Li spinel ferrite particles synthesized through co-precipitation, hydrothermal treatment, and etching in hydrochloric acid. Japanese Journal of Applied Physics, 2020, 59, 085002.	1.5	0