Josué D Mota-Morales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1560340/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosting cell proliferation in three-dimensional polyacrylates/nanohydroxyapatite scaffolds synthesized by deep eutectic solvent-based emulsion templating. Journal of Colloid and Interface Science, 2022, 607, 298-311.	5.0	8
2	Polystyrene Macroporous Magnetic Nanocomposites Synthesized through Deep Eutectic Solvent-in-Oil High Internal Phase Emulsions and Fe ₃ O ₄ Nanoparticles for Oil Sorption. ACS Omega, 2022, 7, 21763-21774.	1.6	5
3	Transforming nature into the next generation of bio-based flexible devices: New avenues using deep eutectic systems. Matter, 2021, 4, 2141-2162.	5.0	47
4	Zinc chloride/acetamide deep eutectic solventâ€mediated fractionation of lignin produces high―and Iowâ€molecularâ€weight fillers for phenolâ€formaldehyde resins. Journal of Applied Polymer Science, 2020, 137, 48385.	1.3	20
5	Deep eutectic solvent-assisted phase separation in chitosan solutions for the production of 3D monoliths and films with tailored porosities. International Journal of Biological Macromolecules, 2020, 164, 4084-4094.	3.6	14
6	Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent. Green Chemistry, 2020, 22, 5785-5797.	4.6	34
7	Macroporous Polyacrylamide \hat{I}^3 -Fe2O3 Nanoparticle Composites as Methylene Blue Dye Adsorbents. ACS Applied Nano Materials, 2020, 3, 5794-5806.	2.4	14
8	Kinetic Studies of Photopolymerization of Monomerâ€Containing Deep Eutectic Solvents. Macromolecular Chemistry and Physics, 2020, 221, 1900511.	1.1	17
9	Tailoring the morphology of poly(high internal phase emulsions) synthesized by using deep eutectic solvents. E-Polymers, 2020, 20, 185-193.	1.3	5
10	ls it feasible to perform an emulsion polymerization using a deep eutectic solvent as continuous phase?. Colloid and Polymer Science, 2020, 298, 313-317.	1.0	1
11	Oil-in-eutectic mixture HIPEs co-stabilized with surfactant and nanohydroxyapatite: ring-opening polymerization for nanocomposite scaffold synthesis. Chemical Communications, 2019, 55, 12292-12295.	2.2	19
12	Choline chloride-zinc chloride deep eutectic solvent mediated preparation of partial O-acetylation of chitin nanocrystal in one step reaction. Carbohydrate Polymers, 2019, 220, 211-218.	5.1	46
13	Deep eutectic solvents as active media for the preparation of highly conducting 3D free-standing PANI xerogels and their derived N-doped and N-, P-codoped porous carbons. Carbon, 2019, 146, 813-826.	5.4	11
14	Eco-friendly Production of Metallic Nanoparticles in Polymeric Solutions and Their Processing into Biocompatible Composites. Fibers and Polymers, 2018, 19, 156-169.	1.1	5
15	Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Progress in Polymer Science, 2018, 78, 139-153.	11.8	181
16	Swelling and methylene blue adsorption of poly(N,N-dimethylacrylamide-co-2-hydroxyethyl) Tj ETQq0 0 0 rgBT /C	verlock 10 2.0	Tf 50 142 T

17	Silver Nanoparticles as Nanoantibiotics: A Comparative Analysis of their Toxicity on Biological Systems of Different Complexity. Revista De Ciencias TecnolÓgicas, 2018, 1, 8-11.	0.0	0
18	Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?. Toxicology Letters, 2017, 276, 11-20.	0.4	187

JOSUé D MOTA-MORALES

#	Article	IF	CITATIONS
19	Nonaqueous Synthesis of Macroporous Nanocomposites Using High Internal Phase Emulsion Stabilized by Nanohydroxyapatite. Advanced Materials Interfaces, 2017, 4, 1700094.	1.9	15
20	Effect of silver nanoparticles on the metabolic rate, hematological response, and survival of juvenile white shrimp Litopenaeus vannamei. Chemosphere, 2017, 169, 716-724.	4.2	26
21	Frontal Polymerization of Deep Eutectic Solvents Composed of Acrylic and Methacrylic Acids. Journal of Polymer Science Part A, 2017, 55, 4046-4050.	2.5	34
22	Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Human and Experimental Toxicology, 2017, 36, 931-948.	1.1	61
23	n-Octanol oxidation on Au/TiO2 catalysts promoted with La and Ce oxides. Molecular Catalysis, 2017, 427, 1-10.	1.0	15
24	On the High Sensitivity of the Electronic States of 1 nm Gold Particles to Pretreatments and Modifiers. Molecules, 2016, 21, 432.	1.7	8
25	Identification of Subnanometric Ag Species, Their Interaction with Supports and Role in Catalytic CO Oxidation. Molecules, 2016, 21, 532.	1.7	12
26	Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1185-1192.	1.7	100
27	Sustainable-solvent-induced polymorphism in chitin films. Green Chemistry, 2016, 18, 4303-4311.	4.6	36
28	Au/TiO 2 catalysts promoted with Fe and Mg for n -octanol oxidation under mild conditions. Catalysis Today, 2016, 278, 104-112.	2.2	14
29	Proton conductivity and relaxation properties of chitosan-acetate films. Electrochimica Acta, 2016, 215, 600-608.	2.6	33
30	Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive. RSC Advances, 2016, 6, 89599-89608.	1.7	58
31	On the stability and chemorheology of a urea choline chloride deep-eutectic solvent as an internal phase emulsions. RSC Advances, 2016, 6, 81694-81702.	1.7	25
32	Deep-Eutectic Solvents as MWCNT Delivery Vehicles in the Synthesis of Functional Poly(HIPE) Nanocomposites for Applications as Selective Sorbents. ACS Applied Materials & Interfaces, 2016, 8, 31295-31303.	4.0	38
33	Synthesis of Biodegradable Macroporous Poly(<scp>l</scp> -lactide)/Poly(ε-caprolactone) Blend Using Oil-in-Eutectic-Mixture High-Internal-Phase Emulsions as Template. ACS Applied Materials & Interfaces, 2016, 8, 16939-16949.	4.0	55
34	Silver nanoparticles synthesized by laser ablation confined in urea choline chloride deep-eutectic solvent. Colloids and Interface Science Communications, 2016, 12, 1-4.	2.0	28
35	Sophisticated and Spontaneous Template-Free Organization of Silica Nanoparticles During Storage. Nano, 2016, 11, 1650037.	0.5	1
36	Enzyme-mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Advances, 2016, 6, 13072-13079.	1.7	43

JOSUé D MOTA-MORALES

#	Article	IF	CITATIONS
37	Processing of lignin in urea–zinc chloride deep-eutectic solvent and its use as a filler in a phenol-formaldehyde resin. RSC Advances, 2015, 5, 28778-28785.	1.7	57
38	Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam. Nuclear Instruments & Methods in Physics Research B, 2015, 362, 49-56.	0.6	5
39	The effect of CNT functionalization on electrical and relaxation phenomena in MWCNT/chitosan composites. Materials Chemistry and Physics, 2015, 155, 252-261.	2.0	30
40	Porous monoliths synthesized <i>via</i> polymerization of styrene and divinyl benzene in nonaqueous deep-eutectic solvent-based HIPEs. RSC Advances, 2015, 5, 23255-23260.	1.7	44
41	Temperature-induced Au nanostructure synthesis in a nonaqueous deep-eutectic solvent for high performance electrocatalysis. Journal of Materials Chemistry A, 2015, 3, 15869-15875.	5.2	35
42	Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. European Polymer Journal, 2015, 67, 242-251.	2.6	218
43	Nanostructures constituted by unusually small silica nanoparticles modified with metal oxides as support for ultra-small gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 9-16.	2.3	5
44	Effect of doping in carbon nanotubes on the viability of biomimetic chitosanâ€carbon nanotubesâ€hydroxyapatite scaffolds. Journal of Biomedical Materials Research - Part A, 2014, 102, 3341-3351.	2.1	20
45	Deep-eutectic solvents as a support in the nonaqueous synthesis of macroporous poly(HIPEs). RSC Advances, 2014, 4, 41584-41587.	1.7	36
46	Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. Journal of Materials Chemistry B, 2014, 2, 7495-7501.	2.9	65
47	New insights into the bactericidal activity of chitosan-Ag bionanocomposite: The role of the electrical conductivity. Colloids and Surfaces B: Biointerfaces, 2013, 111, 741-746.	2.5	31
48	Cryogenic Process to Elaborate Poly(ethylene glycol) Scaffolds. Experimental and Simulation Studies. Industrial & Engineering Chemistry Research, 2013, 52, 706-715.	1.8	4
49	Deep eutectic solvents as both active fillers and monomers for frontal polymerization. Journal of Polymer Science Part A, 2013, 51, 1767-1773.	2.5	92
50	Synthesis of macroporous poly(acrylic acid)–carbon nanotube composites by frontal polymerization in deep-eutectic solvents. Journal of Materials Chemistry A, 2013, 1, 3970.	5.2	97
51	Frontal polymerizations carried out in deep-eutectic mixtures providing both the monomers and the polymerization medium. Chemical Communications, 2011, 47, 5328.	2.2	127
52	Mechanism and Kinetics of the Spontaneous Thermal Copolymerization of Styrene/Maleic Anhydride. Experimental and Simulation Studies in the Presence of 4â€oxoâ€TEMPO. Macromolecular Reaction Engineering, 2010, 4, 222-234.	0.9	7
53	Bringing Sustainability to Macroporous Polystyrene: Cellulose Nanocrystals as Cosurfactant and Surface Modifier in Deep Eutectic Solvent-Based Emulsion Templating. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	3