
Bowen Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1559744/publications.pdf Version: 2024-02-01

ROWEN GAO

#	Article	IF	CITATIONS
1	Mechanical Stability Study on PEDOT:PSS-Based ITO-Free Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 3081-3091.	5.1	11
2	Methylamine-Based Method to Deposit MAPbI ₃ Nanoscale-Thick Films for Efficient Perovskite Solar Cells with Carbon Electrodes. ACS Applied Nano Materials, 2022, 5, 4112-4118.	5.0	4
3	Flexible CH3NH3PbI3 perovskite solar cells with high stability based on all inkjet printing. Solar Energy, 2021, 230, 598-604.	6.1	21
4	RbCs(MAFA)PbI3 perovskite solar cell with 22.81% efficiency using the precise ions cascade regulation. Applied Surface Science, 2020, 530, 147240.	6.1	31
5	High efficiently CsPbBr3 perovskite solar cells fabricated by multi-step spin coating method. Solar Energy, 2020, 211, 1223-1229.	6.1	42
6	Highly Stable All-Inorganic CsPbIBr ₂ Perovskite Solar Cells with 11.30% Efficiency Using Crystal Interface Passivation. ACS Applied Energy Materials, 2020, 3, 8249-8256.	5.1	25
7	High-Efficiency Polymer Solar Cells by Using Co-solvents 1-Chloronaphthalene and 1,8-Octanedithiol as Processing Additives. Journal of Electronic Materials, 2018, 47, 4016-4021.	2.2	5
8	Fluorine substituted thienyl-quinoxaline copolymer to reduce the highest occupied molecular orbit level and increase open-circuit voltage for organic solar cells. Materials Express, 2016, 6, 19-27.	0.5	3
9	Ternary blend bulk heterojunction polymer solar cells based on double donors and single acceptor with ultra wideband absorption. Materials Express, 2015, 5, 489-496.	0.5	5
10	The performance of new polymer solar cells based on thiophene and thienyl-quinoxaline with the post treatments. Materials Letters, 2014, 122, 74-77.	2.6	6
11	Synthesis and photovoltaic properties of an alternating polymer based fluorene and fluorine substituted quinoxaline derivatives. Reactive and Functional Polymers, 2013, 73, 1432-1438.	4.1	11