Hyeong Min Jin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/155971/hyeong-min-jin-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34	1,072	18	32
papers	citations	h-index	g-index
39 ext. papers	1,245 ext. citations	12.5 avg, IF	3.99 L-index

#	Paper	IF	Citations
34	Highly Aligned Carbon Nanowire Array by E-Field Directed Assembly of PAN-Containing Block Copolymers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 58113-58121	9.5	3
33	Large-Area Alignment of Supramolecular Columns by Photothermal Laser Writing. <i>Advanced Materials</i> , 2020 , 32, e2002620	24	3
32	Smart Nanostructured Materials based on Self-Assembly of Block Copolymers. <i>Advanced Functional Materials</i> , 2020 , 30, 1902049	15.6	27
31	Soft crystal martensites: An in situ resonant soft x-ray scattering study of a liquid crystal martensitic transformation. <i>Science Advances</i> , 2020 , 6, eaay5986	14.3	11
30	Nanopatterns with a Square Symmetry from an Orthogonal Lamellar Assembly of Block Copolymers. <i>ACS Applied Materials & Acs Applied &</i>	9.5	8
29	Conformal 3D Nanopatterning by Block Copolymer Lithography with Vapor-Phase Deposited Neutral Adlayer. <i>ACS Nano</i> , 2019 , 13, 13092-13099	16.7	10
28	Sculpted grain boundaries in soft crystals. <i>Science Advances</i> , 2019 , 5, eaax9112	14.3	12
27	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. <i>ACS Nano</i> , 2018 , 12, 4164-4171	16.7	23
26	Laser-Directed Self-Assembly of Highly Aligned Lamellar and Cylindrical Block Copolymer Nanostructures: Experiment and Simulation. <i>Macromolecules</i> , 2018 , 51, 1418-1426	5.5	16
25	Perovskite Light-Emitting Diodes via Laser Crystallization: Systematic Investigation on Grain Size Effects for Device Performance. <i>ACS Applied Materials & Device Performance</i> , 2018, 10, 2490-2495	9.5	27
24	Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS. <i>ACS Applied Materials & Description of the Property of</i>	9.5	36
23	2D Nanopatterning: 2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography (Adv. Funct. Mater. 50/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870354	15.6	3
22	2D Metal Chalcogenide Nanopatterns by Block Copolymer Lithography. <i>Advanced Functional Materials</i> , 2018 , 28, 1804508	15.6	22
21	Controlled Segmentation of Metal Nanowire Array by Block Copolymer Lithography and Reversible Ion Loading. <i>Small</i> , 2017 , 13, 1603939	11	14
20	Self-Assembly of Complex Multimetal Nanostructures from Perforated Lamellar Block Copolymer Thin Films. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 15727-15732	9.5	18
19	Flash Light Millisecond Self-Assembly of High Block Copolymers for Wafer-Scale Sub-10 nm Nanopatterning. <i>Advanced Materials</i> , 2017 , 29, 1700595	24	66
18	Electric field directed self-assembly of block copolymers for rapid formation of large-area complex nanopatterns. <i>Molecular Systems Design and Engineering</i> , 2017 , 2, 560-566	4.6	20

LIST OF PUBLICATIONS

17	Single-step self-assembly of multilayer graphene based dielectric nanostructures. <i>FlatChem</i> , 2017 , 4, 61-67	5.1	7
16	Bimodal phase separated block copolymer/homopolymer blends self-assembly for hierarchical porous metal nanomesh electrodes. <i>Nanoscale</i> , 2017 , 10, 100-108	7.7	11
15	Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. <i>Nature Communications</i> , 2016 , 7, 12911	17.4	109
14	3D Tailored Crumpling of Block-Copolymer Lithography on Chemically Modified Graphene. <i>Advanced Materials</i> , 2016 , 28, 1591-6	24	46
13	Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer. <i>ACS Nano</i> , 2016 , 10, 3435-42	16.7	89
12	Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells. ACS Nano, 2016, 10, 7907-14	16.7	95
11	Au-Ag core-shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. <i>ACS Nano</i> , 2015 , 9, 5536-43	16.7	112
10	Anomalous rapid defect annihilation in self-assembled nanopatterns by defect melting. <i>Nano Letters</i> , 2015 , 15, 1190-6	11.5	31
9	Nanodomain swelling block copolymer lithography for morphology tunable metal nanopatterning. <i>Small</i> , 2014 , 10, 3742-9	11	16
8	Electrical biomolecule detection using nanopatterned silicon via block copolymer lithography. <i>Small</i> , 2014 , 10, 337-43	11	42
7	Device-oriented graphene nanopatterning by mussel-inspired directed block copolymer self-assembly. <i>Nanotechnology</i> , 2014 , 25, 014008	3.4	27
6	Atomic Layer Deposition Assisted Pattern Multiplication of Block Copolymer Lithography for 5 nm Scale Nanopatterning. <i>Advanced Functional Materials</i> , 2014 , 24, 4343-4348	15.6	48
5	Negative-tone block copolymer lithography by in situ surface chemical modification. <i>Small</i> , 2014 , 10, 4207-12	11	4
4	Flexible and transferrable self-assembled nanopatterning on chemically modified graphene. <i>Advanced Materials</i> , 2013 , 25, 1331-5	24	84
3	Large-area, highly oriented lamellar block copolymer nanopatterning directed by graphoepitaxially assembled cylinder nanopatterns. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6307		24
2	Self-Assembly Nanofabrication via Mussel-Inspired Interfacial Engineering. <i>Applied Mechanics and Materials</i> , 2012 , 229-231, 2749-2752	0.3	
1	Directed high-Iblock copolymer self-assembly by laser writing on silicon substrate. <i>Journal of Applied Polymer Science</i> ,52291	2.9	O