Magali Deleu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1559510/publications.pdf

Version: 2024-02-01

83 papers

3,853 citations

32 h-index 58 g-index

86 all docs 86 docs citations

86 times ranked 4839 citing authors

#	Article	IF	CITATIONS
1	Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 2000, 27, 749-754.	3.2	247
2	Effect of Fengycin, a Lipopeptide Produced by Bacillus subtilis, on Model Biomembranes. Biophysical Journal, 2008, 94, 2667-2679.	0.5	194
3	Atomic force microscopy of supported lipid bilayers. Nature Protocols, 2008, 3, 1654-1659.	12.0	186
4	Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science, 2017, 358, 1431-1434.	12.6	167
5	The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cellular Microbiology, 2011, 13, 1824-1837.	2.1	148
6	Fengycin interaction with lipid monolayers at the air–aqueous interface—implications for the effect of fengycin on biological membranes. Journal of Colloid and Interface Science, 2005, 283, 358-365.	9.4	146
7	Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids. Plant Physiology, 2016, 170, 367-384.	4.8	137
8	Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. ELife, 2017, 6, .	6.0	135
9	From renewable vegetables resources to microorganisms: new trends in surfactants. Comptes Rendus Chimie, 2004, 7, 641-646.	0.5	131
10	Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3171-3190.	2.6	129
11	Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 152, 3-10.	4.7	108
12	Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochimica Et Biophysica Acta - General Subjects, 2005, 1726, 87-95.	2.4	92
13	Multiple C2 domains and transmembrane region proteins (<scp>MCTP</scp> s) tether membranes at plasmodesmata. EMBO Reports, 2019, 20, e47182.	4.5	92
14	Effects of surfactin on membrane models displaying lipid phase separation. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 801-815.	2.6	88
15	Penetration of Surfactin into Phospholipid Monolayers:Â Nanoscale Interfacial Organization. Langmuir, 2006, 22, 11337-11345.	3.5	87
16	The Surfactin-Like Lipopeptides From Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Frontiers in Bioengineering and Biotechnology, 2021, 9, 623701.	4.1	87
17	Interfacial properties of oleosins and phospholipids from rapeseed for the stability of oil bodies in aqueous medium. Colloids and Surfaces B: Biointerfaces, 2010, 80, 125-132.	5.0	84
18	Interaction of Surfactin with Membranes: A Computational Approach. Langmuir, 2003, 19, 3377-3385.	3.5	80

#	Article	IF	Citations
19	Nanometer Scale Organization of Mixed Surfactin/Phosphatidylcholine Monolayers. Biophysical Journal, 1999, 77, 2304-2310.	0.5	59
20	The Structure of Two Fengycins from Bacillus subtilis S499. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1999, 54, 859-866.	1.4	58
21	Plant–Pathogen Interactions: Underestimated Roles of Phyto-oxylipins. Trends in Plant Science, 2020, 25, 22-34.	8.8	57
22	Effect of the antibiotic azithromycin on thermotropic behavior of DOPC or DPPC bilayers. Chemistry and Physics of Lipids, 2006, 144, 108-116.	3.2	55
23	Computer Simulation of Surfactin Conformation at a Hydrophobic/Hydrophilic Interface. Langmuir, 1999, 15, 2409-2413.	3.5	53
24	New Amphiphilic Neamine Derivatives Active against Resistant Pseudomonas aeruginosa and Their Interactions with Lipopolysaccharides. Antimicrobial Agents and Chemotherapy, 2014, 58, 4420-4430.	3.2	52
25	Use of ionic liquids for biocatalytic synthesis of sugar derivatives. Journal of Chemical Technology and Biotechnology, 2012, 87, 451-471.	3.2	47
26	Is It Possible to Predict the Odor of a Molecule on the Basis of its Structure?. International Journal of Molecular Sciences, 2019, 20, 3018.	4.1	44
27	Nanoscale membrane activity of surfactins: Influence of geometry, charge and hydrophobicity. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2058-2068.	2.6	43
28	Exploring the Dual Interaction of Natural Rhamnolipids with Plant and Fungal Biomimetic Plasma Membranes through Biophysical Studies. International Journal of Molecular Sciences, 2019, 20, 1009.	4.1	43
29	Insights into the Relationships Between Herbicide Activities, Molecular Structure and Membrane Interaction of Cinnamon and Citronella Essential Oils Components. International Journal of Molecular Sciences, 2019, 20, 4007.	4.1	42
30	Development of coated liposomes loaded with ghrelin for nose-to-brain delivery for the treatment of cachexia. International Journal of Nanomedicine, 2017, Volume 12, 8531-8543.	6.7	40
31	Characterization of the Interactions between Fluoroquinolone Antibiotics and Lipids: a Multitechnique Approach. Biophysical Journal, 2008, 94, 3035-3046.	0.5	38
32	Surfactin Protects Wheat against Zymoseptoria tritici and Activates Both Salicylic Acid- and Jasmonic Acid-Dependent Defense Responses. Agriculture (Switzerland), 2018, 8, 11.	3.1	36
33	Membrane Interactions of Natural Cyclic Lipodepsipeptides of the Viscosin Group. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 331-339.	2.6	34
34	Imaging mixed lipid monolayers by dynamic atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1513, 55-62.	2.6	33
35	Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics. Journal of Biological Chemistry, 2016, 291, 13864-13874.	3.4	33
36	Recovery of fibers and biomethane from banana peduncles biomass through anaerobic digestion. Energy for Sustainable Development, 2017, 37, 60-65.	4.5	33

#	Article	IF	Citations
37	Acylated and unacylated ghrelin binding to membranes and to ghrelin receptor: Towards a better understanding of the underlying mechanisms. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2102-2113.	2.6	31
38	Purification of pectin from apple pomace juice by using sodium caseinate and characterisation of their binding by isothermal titration calorimetry. Food Hydrocolloids, 2012, 29, 211-218.	10.7	29
39	Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?. Chemosphere, 2018, 194, 414-421.	8.2	27
40	Synthetic Rhamnolipid Bolaforms trigger an innate immune response in Arabidopsis thaliana. Scientific Reports, 2018, 8, 8534.	3.3	25
41	Surfactin Stimulated by Pectin Molecular Patterns and Root Exudates Acts as a Key Driver of the <i>Bacillus</i> -Plant Mutualistic Interaction. MBio, 2021, 12, e0177421.	4.1	25
42	d-Xylose and l-arabinose laurate esters: Enzymatic synthesis, characterization and physico-chemical properties. Enzyme and Microbial Technology, 2018, 112, 14-21.	3.2	24
43	Bioethanol potential of raw and hydrothermally pretreated banana bulbs biomass in simultaneous saccharification and fermentation process with Saccharomyces cerevisiae. Biomass Conversion and Biorefinery, 2019, 9, 553-563.	4.6	24
44	Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation. Journal of Biological Chemistry, 2021, 296, 100602.	3.4	24
45	Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane. Scientific Reports, 2018, 8, 9784.	3.3	23
46	Effect of lipopeptides and iontophoresis on aciclovir skin delivery. Journal of Pharmacy and Pharmacology, 2010, 62, 702-708.	2.4	22
47	Influence of environmental conditions on the interfacial organisation of fengycin, a bioactive lipopeptide produced by Bacillus subtilis. Journal of Colloid and Interface Science, 2009, 329, 253-264.	9.4	21
48	Synthesis and physico-chemical characterization of bolaamphiphiles derived from alkenyl d-xylosides. New Journal of Chemistry, 2011, 35, 2258.	2.8	21
49	Enhancing the Membranolytic Activity of Chenopodium quinoa Saponins by Fast Microwave Hydrolysis. Molecules, 2020, 25, 1731.	3.8	21
50	How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers. Scientific Reports, 2018, 8, 10845.	3.3	20
51	Differential Interaction of Synthetic Glycolipids with Biomimetic Plasma Membrane Lipids Correlates with the Plant Biological Response. Langmuir, 2017, 33, 9979-9987.	3.5	19
52	Fractionation and Structural Characterization of Hemicellulose from Steam-Exploded Banana Rachis. Waste and Biomass Valorization, 2020, 11, 2183-2192.	3.4	19
53	Interactions Between Natural Herbicides and Lipid Bilayers Mimicking the Plant Plasma Membrane. Frontiers in Plant Science, 2019, 10, 329.	3.6	18
54	A TSPO-related protein localizes to the early secretory pathway in Arabidopsis, but is targeted to mitochondria when expressed in yeast. Journal of Experimental Botany, 2011, 62, 497-508.	4.8	17

#	Article	IF	Citations
55	Changes in membrane biophysical properties induced by the Budesonide/Hydroxypropyl- \hat{l}^2 -cyclodextrin complex. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1930-1940.	2.6	17
56	Triterpenoids in Echinoderms: Fundamental Differences in Diversity and Biosynthetic Pathways. Marine Drugs, 2019, 17, 352.	4.6	17
57	Bolaamphiphiles Derived from Alkenyl L-Rhamnosides and Alkenyl D-Xylosides: Importance of the Hydrophilic Head. Molecules, 2013, 18, 6101-6112.	3.8	16
58	Effect of xylose on the structural and physicochemical properties of peanut isolated protein based films. RSC Advances, 2017, 7, 52357-52365.	3.6	16
59	Cynara cardunculus Crude Extract as a Powerful Natural Herbicide and Insight into the Mode of Action of Its Bioactive Molecules. Biomolecules, 2020, 10, 209.	4.0	16
60	Interactions of sugar-based bolaamphiphiles with biomimetic systems of plasma membranes. Biochimie, 2016, 130, 23-32.	2.6	15
61	The activity of the saponin ginsenoside Rh2 is enhanced by the interaction with membrane sphingomyelin but depressed by cholesterol. Scientific Reports, 2019, 9, 7285.	3.3	15
62	Enzymatic synthesis and surface properties of novel rhamnolipids. Process Biochemistry, 2013, 48, 133-143.	3.7	14
63	Interaction of fengycin with stratum corneum mimicking model membranes: A calorimetry study. Colloids and Surfaces B: Biointerfaces, 2014, 121, 27-35.	5.0	14
64	A compartmentalized microsystem helps understanding the uptake of benzo[a]pyrene by fungi during soil bioremediation processes. Science of the Total Environment, 2021, 784, 147151.	8.0	14
65	d-xylose-based bolaamphiphiles: Synthesis and influence of the spacer nature on their interfacial and membrane properties. Comptes Rendus Chimie, 2012, 15, 68-74.	0.5	13
66	Linoleic and linolenic acid hydroperoxides interact differentially with biomimetic plant membranes in a lipid specific manner. Colloids and Surfaces B: Biointerfaces, 2019, 175, 384-391.	5.0	13
67	Probing peptide–membrane interactions using AFM. Surface and Interface Analysis, 2008, 40, 151-156.	1.8	12
68	Analysis of calcium-induced effects on the conformation of fengycin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 110, 450-457.	3.9	12
69	Comparative biochemical methane potential of some varieties of residual banana biomass and renewable energy potential. Biomass Conversion and Biorefinery, 2017, 7, 167-177.	4.6	12
70	Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. Frontiers in Plant Science, 2021, 12, 749581.	3.6	12
71	Alkylbetainate chlorides: Synthesis and behavior of monolayers at the air–water interface. Thin Solid Films, 2011, 520, 344-350.	1.8	11
72	(TRANS)ESTERIFICATION OF MANNOSE CATALYZED BY LIPASE B FROMCandida antarcticalN AN IMPROVED REACTION MEDIUM USING CO-SOLVENTS AND MOLECULAR SIEVE. Preparative Biochemistry and Biotechnology, 2012, 42, 348-363.	1.9	11

#	Article	IF	CITATIONS
73	Contributions and Limitations of Biophysical Approaches to Study of the Interactions between Amphiphilic Molecules and the Plant Plasma Membrane. Plants, 2020, 9, 648.	3.5	11
74	Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help?. Journal of Experimental Botany, 2022, 73, 2765-2784.	4.8	8
75	A stereocontrolled synthesis of the hydrophobic moiety of rhamnolipids. Tetrahedron Letters, 2015, 56, 1159-1161.	1.4	7
76	The Trypanosoma Brucei KIFC1 Kinesin Ensures the Fast Antibody Clearance Required for Parasite Infectivity. IScience, 2020, 23, 101476.	4.1	6
77	Surface properties of new virginiamycin M1 derivatives. Colloids and Surfaces B: Biointerfaces, 2009, 69, 268-275.	5.0	5
78	Carbohydrate-carbohydrate interaction drives the preferential insertion of dirhamnolipid into glycosphingolipid enriched membranes. Journal of Colloid and Interface Science, 2022, 616, 739-748.	9.4	4
79	Insight into the Self-Assembling Properties of Peptergents: A Molecular Dynamics Simulation Study. International Journal of Molecular Sciences, 2018, 19, 2772.	4.1	3
80	Molecular Model for the Self-Assembly of the Cyclic Lipodepsipeptide Pseudodesmin A. Journal of Physical Chemistry B, 2019, 123, 8916-8922.	2.6	2
81	Recycling Mitsunobu coupling: a shortcut for troublesome esterifications. Tetrahedron, 2016, 72, 7488-7495.	1.9	1
82	Structure and thermal properties of arachin from six varieties: effect of 35.5 kDa subunit. International Journal of Food Properties, 2020, 23, 908-917.	3.0	1
83	Modulation of plant plasma membrane structure by exogenous fatty acid hydroperoxide is a potential perception mechanism for their eliciting activity. Plant, Cell and Environment, 2022, 45, 1082-1095.	5.7	1