
Joachim T Haug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1559302/publications.pdf Version: 2024-02-01

Іоленім Т. Нлис

#	Article	IF	CITATIONS
1	A fossil aphidlion preserved together with its prey in 40 million-year-old Baltic amber. Palaeobiodiversity and Palaeoenvironments, 2023, 103, 155-163.	0.6	6
2	Split-footed lacewings declined over time: indications from the morphological diversity of their antlion-like larvae. Palaontologische Zeitschrift, 2022, 96, 29-50.	0.8	21
3	Debris-carrying behaviour of bark lice immatures preserved in 100 million years old amber. Palaontologische Zeitschrift, 2022, 96, 231-258.	0.8	6
4	EXPANDING THE RECORD OF LARVAE OF FALSE FLOWER BEETLES WITH PROMINENT TERMINAL ENDS. , 2022, 128, .		5
5	A 100-million-year-old ensiferan with unusual mouthparts and comments on the evolution of raptorial appendages within Polyneoptera. Geodiversitas, 2022, 44, .	0.2	1
6	The first adult mantis lacewing from Baltic amber, with an evaluation of the post-Cretaceous loss of morphological diversity of raptorial appendages in Mantispidae. Fossil Record, 2022, 25, 11-24.	0.5	2
7	The Diversity of Aphidlion-like Larvae over the Last 130 Million Years. Insects, 2022, 13, 336.	1.0	13
8	Lepidopteran caterpillars in the Cretaceous: were they a good food source for early birds?. Palaeodiversity, 2022, 15, .	0.7	5
9	First fossil tumbling flower beetle-type larva from 99 million-year-old amber. Palaontologische Zeitschrift, 2022, 96, 219-229.	0.8	6
10	The first fossil immature of Elmidae: an unusual riffle beetle larva preserved in Baltic amber. PeerJ, 2022, 10, e13025.	0.9	3
11	Global Size Pattern in a Group of Important Ecological Indicators (Diptera, Chironomidae) Is Driven by Latitudinal Temperature Gradients. Insects, 2022, 13, 34.	1.0	8
12	Declining morphological diversity in snakefly larvae during last 100 million years. Palaontologische Zeitschrift, 2022, 96, 749-780.	0.8	2
13	The Morphological Diversity of Antlion Larvae and Their Closest Relatives over 100 Million Years. Insects, 2022, 13, 587.	1.0	10
14	Another strange holometabolan larva from Kachin amber—the enigma of the beak larva (Neuropteriformia). Palaeoentomology, 2022, 5, .	0.4	2
15	After 100Âyears: a detailed view of an eumalacostracan crustacean from the Upper Jurassic Solnhofen LagerstĀ s te with raptorial appendages unique to Euarthropoda. Lethaia, 2021, 54, 55-72.	0.6	7
16	Morphology and anatomy of the Late Jurassic <i>Mayrocaris bucculata</i> (Eucrustacea?,) Tj ETQq0 0 0 rgBT /Ove Palaeontology, 2021, 19, 289-320.	erlock 10 T 0.6	Tf 50 147 Td 2
17	The fossil record of whip spiders: the past of Amblypygi. Palaontologische Zeitschrift, 2021, 95, 387-412.	0.8	4
18	A new fossil mantis shrimp and the convergent evolution of a lobster-like morphotype. PeerJ, 2021, 9, e11124.	0.9	1

#	Article	IF	CITATIONS
19	A 100 million-year-old armoured caterpillar supports the early diversification of moths and butterflies. Gondwana Research, 2021, 93, 101-105.	3.0	11
20	New species of Thylacocephala, Eodollocaris keithflinti n. gen., n. sp., from the Mazon Creek Lagerstäte, Illinois, United States (c. 307 Ma) and redescription of other Mazon Creek thylacocephalans. Geodiversitas, 2021, 43, .	0.2	3
21	Intraspecific variation in the Cambrian: new observations on the morphology of the Chengjiang euarthropod Sinoburius lunaris. Bmc Ecology and Evolution, 2021, 21, 127.	0.7	2
22	Mass occurrence of small isopodan crustaceans in 100-million-year-old amber: an extraordinary view on behaviour of extinct organisms. Palaontologische Zeitschrift, 2021, 95, 429-445.	0.8	9
23	Xâ€ray microtomography and phylogenomics provide insights into the morphology and evolution of an enigmatic Mesozoic insect larva. Systematic Entomology, 2021, 46, 672-684.	1.7	27
24	The morphological diversity of spoon-winged lacewing larvae and the first possible fossils from 99 million-year-old Kachin amber, Myanmar. Palaeodiversity, 2021, 14, .	0.7	15
25	The earliest record of fossil solid-wood-borer larvae—immature beetles in 99 million-year-old Myanmar amber. Palaeoentomology, 2021, 4, .	0.4	11
26	Changes in the Morphological Diversity of Larvae of Lance Lacewings, Mantis Lacewings and Their Closer Relatives over 100 Million Years. Insects, 2021, 12, 860.	1.0	20
27	Long-headed predators in Cretaceous amber—fossil findings of an unusual type of lacewing larva. Palaeoentomology, 2021, 4, .	0.4	14
28	Fossil dragonfly-type larva with lateral abdominal protrusions and implications on the early evolution of Pterygota. IScience, 2021, 24, 103162.	1.9	1
29	Methods and Practices in Paleo-Evo-Devo. , 2021, , 1151-1164.		0
30	Newï»; extreme morphologies as exemplified by 100 million-year-old lacewing larvae. Scientific Reports, 2021, 11, 20432.	1.6	14
31	Texas beetle larvae (Brachypsectridae) – the last 100 million years reviewed. Palaeodiversity, 2021, 14, .	0.7	6
32	An owlfly larva preserved in Mexican amber and the Miocene record of lacewing larvae. Boletin De La Sociedad Geologica Mexicana, 2021, 73, A271220.	0.1	8
33	Description and ontogeny of a 40-million-year-old parasitic isopodan crustacean: <i>Parvucymoides dvorakorum</i> gen. et sp. nov PeerJ, 2021, 9, e12317.	0.9	1
34	Why the term "larva―is ambiguous, or what makes a larva?. Acta Zoologica, 2020, 101, 167-188.	0.6	39
35	Examination of functional morphology of dajiid isopods using <i>Arthrophryxus</i> sp. parasitising a mysid shrimp as an example. Acta Zoologica, 2020, 101, 339-352.	0.6	7
36	Comment on the letter of the Society of Vertebrate Paleontology (SVP) dated April 21, 2020 regarding "Fossils from conflict zones and reproducibility of fossil-based scientific data― the importance of private collections. Palaontologische Zeitschrift, 2020, 94, 413-429.	0.8	13

#	Article	IF	CITATIONS
37	Giant planktic larvae of anomalan crustaceans and their unusual compound eyes. Helgoland Marine Research, 2020, 74, .	1.3	5
38	Comment on the letter of the Society of Vertebrate Paleontology (SVP) dated April 21, 2020 regarding "Fossils from conflict zones and reproducibility of fossil-based scientific data― Myanmar amber. Palaontologische Zeitschrift, 2020, 94, 431-437.	0.8	28
39	Untangling the Gordian knot—further resolving the super-species complex of 300-million-year-old xiphosurids by reconstructing their ontogeny. Development Genes and Evolution, 2020, 230, 13-26.	0.4	14
40	Metamorphosis in Crustaceans. , 2020, , 255-284.		3
41	Eco-morphological diversity of larvae of soldier flies and their closest relatives in deep time. PeerJ, 2020, 8, e10356.	0.9	7
42	An unusual 100-million-year old holometabolan larva with a piercing mouth cone. PeerJ, 2020, 8, e8661.	0.9	11
43	Shape of attachment structures in parasitic isopodan crustaceans: the influence of attachment site and ontogeny. PeerJ, 2020, 8, e9181.	0.9	5
44	A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts. Zoological Letters, 2019, 5, 29.	0.7	35
45	A new calmanostracan crustacean species from the Cretaceous Yixian Formation and a simple approach for differentiating fossil tadpole shrimps and their relatives. Zoological Letters, 2019, 5, 20.	0.7	5
46	Letter to the editor referencing "The apparent kleptoparasitism in fish-parasitic gnathiid isopods― 10.1007/s00436-018-6152-8. Parasitology Research, 2019, 118, 1679-1682.	0.6	1
47	Palaeoecology of Voulteryon parvulus (Eucrustacea, Polychelida) from the Middle Jurassic of La Voulte-sur-Rhône Fossil-Lagerstäte (France). Scientific Reports, 2019, 9, 5332.	1.6	10
48	Cretaceous chimera – an unusual 100-million-year old neuropteran larva from the "experimental phase―of insect evolution. Palaeodiversity, 2019, 12, 1.	0.7	35
49	A fossil tanaidacean crustacean from the Middle Jurassic of southern Germany. Palaeodiversity, 2019, 12, 13.	0.7	4
50	A new thylacocephalan crustacean from the Upper Jurassic lithographic limestones of southern Germany and the diversity of Thylacocephala. Palaeodiversity, 2019, 12, 69.	0.7	21
51	Fly palaeo-evo-devo: immature stages of bibionomorphan dipterans in Baltic and Bitterfeld amber. PeerJ, 2019, 7, e7843.	0.9	11
52	Beetle larvae with unusually large terminal ends and a fossil that beats them all (Scraptiidae,) Tj ETQq0 0 0 rgB	[/Overlock	10 Tf 50 142
53	Caught in the act of hatching – a group of heteropteran nymphs escaping from their eggs preserved in Dominican amber. Palaeodiversity, 2019, 12, 123.	0.7	3

54	The ride of the parasite: a 100-million-year old mantis lacewing larva captured while mounting its spider host. Zoological Letters, 2018, 4, 31.	0.7	39
	spider nost. Zoological Letters, 2018, 4, 31.		

Јоаснім Т Наис

#	Article	IF	CITATIONS
55	A new "extreme―type of mantis shrimp larva. Nauplius, 2018, 26, .	0.3	3
56	168 million years old "marine lice―and the evolution of parasitism within isopods. BMC Evolutionary Biology, 2017, 17, 76.	3.2	31
57	Central nervous system and muscular bundles preserved in a 240 million year old giant bristletail (Archaeognatha: Machilidae). Scientific Reports, 2017, 7, 46016.	1.6	8
58	Ontogenetic sequence comparison of extant and fossil tadpole shrimps: no support for the "living fossil―concept. Palaontologische Zeitschrift, 2017, 91, 463-472.	0.8	5
59	A crustacean with eumalacostracan affinities from the Early Devonian Hunsrück Slate (<scp>SW</scp> Germany). Papers in Palaeontology, 2017, 3, 151-159.	0.7	3
60	New thylacocephalans from the Cretaceous LagerstÃ t ten of Lebanon. Bulletin - Societie Geologique De France, 2017, 188, 19.	0.9	14
61	A possible 150 million years old cirripede crustacean nauplius and the phenomenon of giant larvae. Contributions To Zoology, 2017, 86, 213-227.	0.2	10
62	Litholepas klausreschi gen. et sp. nov., a new neolepadine barnacle (Cirripedia, Thoracica) on a sponge from the Upper Jurassic lithographic limestones of southern Germany. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2017, 284, 29-42.	0.2	4
63	An exceptionally preserved 110 million years old praying mantis provides new insights into the predatory behaviour of early mantodeans. PeerJ, 2017, 5, e3605.	0.9	18
64	The bigger, the better? Volume measurements of parasites and hosts: Parasitic barnacles (Cirripedia,) Tj ETQq0 C	0 o _{rg} BT /C	verlock 10 Tf
65	A new glimpse on Mesozoic zooplankton—150 million-year-old lobster larvae. PeerJ, 2017, 5, e2966.	0.9	4
66	The presumed oldest flying insect: more likely a myriapod?. PeerJ, 2017, 5, e3402.	0.9	26
67	Methods and Practices in Paleo-Evo-Devo. , 2017, , 1-14.		0
68	Evolution of insect wings and development – new details from <scp>P</scp> alaeozoic nymphs. Biological Reviews, 2016, 91, 53-69.	4.7	37
69	Extreme morphologies of mantis shrimp larvae. Nauplius, 2016, 24, .	0.3	13
70	Three-dimensionally preserved minute larva of a great-appendage arthropod from the early Cambrian Chengjiang biota. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5542-5546.	3.3	40
71	On the sighted ancestry of blindness – exceptionally preserved eyes of Mesozoic polychelidan lobsters. Zoological Letters, 2016, 2, 13.	0.7	9
72	Functional morphology of giant mole crab larvae: a possible case of defensive enrollment. Zoological Letters, 2016, 2, 17.	0.7	10

#	Article	IF	CITATIONS
73	"Intermetamorphic―developmental stages in 150 million-year-old achelatan lobsters – The case of the species tenera. Arthropod Structure and Development, 2016, 45, 108-121.	0.8	19
74	Mesoprosopon triasinum from the Triassic of Austria revisited: The oldest eumalacostracan larva known to date and its significance for interpreting fossil cycloids. Gondwana Research, 2016, 37, 86-97.	3.0	9
75	Introduction: Fossils as Living Beings. Arthropod Structure and Development, 2016, 45, 69-70.	0.8	0
76	The first fossil record of larval stages of parasitic isopods: cryptoniscus larvae preserved in Miocene amber. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2016, 279, .	0.2	18
77	The evolution of a key character, or how to evolve a slipper lobster. Arthropod Structure and Development, 2016, 45, 97-107.	0.8	14
78	Functional morphology of parasitic isopods: understanding morphological adaptations of attachment and feeding structures in <i>Nerocila</i> as a pre-requisite for reconstructing the evolution of Cymothoidae. PeerJ, 2016, 4, e2188.	0.9	26
79	An Intermetamorphic Larval Stage of a Mantis Shrimp and Its Contribution to the 'Missing-Element Problem' of Stomatopod Raptorial Appendages. Annual Research & Review in Biology, 2016, 10, 1-19.	0.4	6
80	Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. BMC Evolutionary Biology, 2015, 15, 208.	3.2	36
81	Larval Development of the European Lobster and How Small Heterochronic Shifts Lead to a More Pronounced Metamorphosis. International Journal of Zoology, 2015, 2015, 1-17.	0.3	18
82	A 150-million-year-old crab larva and its implications for the early rise of brachyuran crabs. Nature Communications, 2015, 6, 6417.	5.8	17
83	Pushing the limits to the north – a fossil mantis shrimp from Oregon, USA. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2015, 278, 281-290.	0.2	0
84	Enalikter aphson is more likely an annelid than an arthropod: a comment to Siveter et al. (2014). Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20140946.	1.2	3
85	A possible hatchling of a jumping bristletail in 50 million years old amber. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2015, 278, 191-199.	0.2	6
86	"Crustacea― Comparative Aspects of Larval Development. , 2015, , 1-37.		10
87	From Fossil Parasitoids to Vectors. Advances in Parasitology, 2015, 90, 137-200.	1.4	20
88	Unique occurrence of polychelidan lobster larvae in the fossil record and its evolutionary implications. Gondwana Research, 2015, 28, 869-874.	3.0	25
89	Defensive enrolment in mantis shrimp larvae (Malacostraca: Stomatopoda). Contributions To Zoology, 2014, 83, 185-194.	0.2	22
90	A new cycloneuralian from the Burgess Shale with a palaeoscolecid-type terminal end. Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen, 2014, 274, 73-79.	0.2	2

#	Article	IF	CITATIONS
91	A eucrustacean from the <scp>C</scp> ambrian â€~ <scp>O</scp> rsten' of <scp>S</scp> weden with epipods and a maxillary excretory opening. Palaeontology, 2014, 57, 909-930.	1.0	3
92	Diversity and palaeoecology of the enigmatic genus <i><scp>K</scp>nebelia</i> (<scp>E</scp> ucrustacea, <scp>D</scp> ecapoda, <scp>E</scp> ryonidae) from <scp>U</scp> pper <scp>J</scp> urassic plattenkalks in southern <scp>G</scp> ermany. Palaeontology, 2014, 57, 397-416.	1.0	19
93	The implications of a Silurian and other thylacocephalan crustaceans for the functional morphology and systematic affinities of the group. BMC Evolutionary Biology, 2014, 14, 159.	3.2	37
94	A 520 million-year-old chelicerate larva. Nature Communications, 2014, 5, 4440.	5.8	24
95	The evolution of centipede venom claws – Open questions and possible answers. Arthropod Structure and Development, 2014, 43, 5-16.	0.8	17
96	Demecology in the Cambrian: synchronized molting in arthropods from the Burgess Shale. BMC Biology, 2013, 11, 64.	1.7	27
97	Is Strudiella a Devonian insect?. Nature, 2013, 494, E3-E4.	13.7	23
98	A centipede nymph in Baltic amber and a new approach to document amber fossils. Organisms Diversity and Evolution, 2013, 13, 425-432.	0.7	32
99	On the Unique Perspective of Paleontology in the Study of Developmental Evolution and Biases. Biological Theory, 2013, 8, 293-311.	0.8	27
100	Diversity of developmental patterns in achelate lobsters—today and in the Mesozoic. Development Genes and Evolution, 2013, 223, 363-373.	0.4	20
101	Evolution of Crustacean Appendages. , 2013, , 34-73.		17
102	Re-study of larval stages of Amphionides reynaudii (Malacostraca: Eucarida) with modern imaging techniques. Journal of Crustacean Biology, 2012, 32, 916-930.	0.3	13
103	A Carboniferous Non-Onychophoran Lobopodian Reveals Long-Term Survival of a Cambrian Morphotype. Current Biology, 2012, 22, 1673-1675.	1.8	38
104	A holomorph approach to xiphosuran evolution—a case study on the ontogeny of Euproops. Development Genes and Evolution, 2012, 222, 253-268.	0.4	60
105	Functional morphology, ontogeny and evolution of mantis shrimpâ€like predators in the Cambrian. Palaeontology, 2012, 55, 369-399.	1.0	113
106	Exceptionally wellâ€preserved isolated eyes from Cambrian â€~Orsten' fossil assemblages of Sweden. Palaeontology, 2012, 55, 553-566.	1.0	8
107	Morphology and function in the Cambrian Burgess Shale megacheiran arthropod Leanchoilia superlata and the application of a descriptive matrix. BMC Evolutionary Biology, 2012, 12, 162.	3.2	79
108	Tagmatization in Stomatopoda – reconsidering functional units of modern-day mantis shrimps (Verunipeltata, Hoplocarida) and implications for the interpretation of fossils. Frontiers in Zoology, 2012, 9, 31.	0.9	12

#	Article	IF	CITATIONS
109	External Morphology and Post-Embryonic Development of Derocheilocaris remanei (Mystacocarida) Revisited, With A Comparison to the Cambrian Taxon Skara. Journal of Crustacean Biology, 2011, 31, 668-692.	0.3	20
110	External morphology of Lightiella monniotae (Crustacea, Cephalocarida) in the light of Cambrian â€~Orsten' crustaceans. Arthropod Structure and Development, 2011, 40, 449-478.	0.8	33
111	Autofluorescence imaging, an excellent tool for comparative morphology. Journal of Microscopy, 2011, 244, 259-272.	0.8	95
112	The importance of lithographic limestones for revealing ontogenies in fossil crustaceans. Swiss Journal of Geosciences, 2011, 104, 85-98.	0.5	26
113	Imaging and Documenting Gammarideans. International Journal of Zoology, 2011, 2011, 1-9.	0.3	50
114	New pentastomids from the Late Cambrian of Sweden – deeper insight of the ontogeny of fossil tongue worms. Palaeontographica, Abteilung A: Palaozoologie - Stratigraphie, 2011, 293, 95-145.	1.5	24
115	Evolution of mantis shrimps (Stomatopoda, Malacostraca) in the light of new Mesozoic fossils. BMC Evolutionary Biology, 2010, 10, 290.	3.2	36
116	High-level phylogenetic analysis using developmental sequences: The Cambrian â€Martinssonia elongata, â€Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Structure and Development, 2010, 39, 154-173.	0.8	54
117	A Eucrustacean Metanauplius from the Lower Cambrian. Current Biology, 2010, 20, 1075-1079.	1.8	52
118	â€Henningsmoenicaris scutula, â€Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100, 311-350.	0.3	64
119	Ontogeny of two Cambrian stem crusaceans, â€Goticaris longispinosaa and â€Cambropachycope clarksoni. Palaeontographica, Abteilung A: Palaozoologie - Stratigraphie, 2009, 289, 1-43.	1.5	34
120	The Stem Crustacean <i>Oelandocaris oelandica</i> Re-Visited. Acta Palaeontologica Polonica, 2008, 53, 461-484.	0.4	56
121	Basal euarthropod development: a fossil-based perspective. , 2008, , 281-298.		14
122	Diversity of hippoidean crabs - considering ontogeny, quantifiable morphology, and phenotypic plasticity. Nauplius, 0, 29, .	0.3	1
123	Ontogenetic development captured in amber - the first record of aquatic representatives of Isopoda in Cretaceous amber from Myanmar. Nauplius, 0, 29, .	0.3	3
124	Detailed description of some mantis shrimp larvae and their implication for the character evolution within Stomatopoda. Nauplius, 0, 28, .	0.3	4
125	The decline of silky lacewings and morphological diversity of long-nosed antlion larvae through time. Palaeontologia Electronica, 0, , .	0.9	13
126	Exceptionally preserved cryptoniscium larvae - morphological details of rare isopod crustaceans from French Cretaceous Vendean amber. Palaeontologia Electronica, 0, , .	0.9	6

Јоаснім Т Наис

#	Article	IF	CITATIONS
127	Evolution of reproductive strategies in dictyopteran insects – clues from ovipositor morphology of extinct roachoids. Acta Palaeontologica Polonica, 0, 63, .	0.4	21
128	ldentifying the oldest larva of a myrmeleontiformian lacewing – a morphometric approach. Acta Palaeontologica Polonica, 0, 65, .	0.4	14
129	A new glimpse on trophic interactions of 100-million-year old lacewing larvae. Acta Palaeontologica Polonica, 0, 65, .	0.4	10