## Nickolai L Savchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1559170/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Microstructural Evolution of AA5154 Layers Intermixed with Mo Powder during Electron Beam<br>Wire-Feed Additive Manufacturing (EBAM). Metals, 2022, 12, 109.                                                                                           | 2.3 | 5         |
| 2  | In Situ Intermetallics-Reinforced Composite Prepared Using Multi-Pass Friction Stir Processing of Copper Powder on a Ti6Al4V Alloy. Materials, 2022, 15, 2428.                                                                                         | 2.9 | 4         |
| 3  | The Effect of Heat Input, Annealing, and Deformation Treatment on Structure and Mechanical<br>Properties of Electron Beam Additive Manufactured (EBAM) Silicon Bronze. Materials, 2022, 15, 3209.                                                      | 2.9 | 6         |
| 4  | Self-Lubricating Effect of FeWO4 Tribologically Synthesized from WC-(Fe-Mn-C) Composite during<br>High-Speed Sliding against a HSS Disk. Lubricants, 2022, 10, 86.                                                                                     | 2.9 | 9         |
| 5  | Self-Lubricating Effect of WC/Y–TZP–Al2O3 Hybrid Ceramic–Matrix Composites with Dispersed<br>Hadfield Steel Particles during High-Speed Sliding against an HSS Disk. Lubricants, 2022, 10, 140.                                                        | 2.9 | 5         |
| 6  | Characterization of a Bimetallic Multilayered Composite "Stainless Steel/Copper―Fabricated with<br>Wire-Feed Electron Beam Additive Manufacturing. Metals, 2021, 11, 1151.                                                                             | 2.3 | 13        |
| 7  | Subsurface multilayer evolution of ZrB2–SiC ceramics in high-speed sliding and adhesion transfer conditions. Wear, 2021, 482-483, 203956.                                                                                                              | 3.1 | 6         |
| 8  | Heat Input Effect on Microstructure and Mechanical Properties of Electron Beam Additive<br>Manufactured (EBAM) Cu-7.5wt.%Al Bronze. Materials, 2021, 14, 6948.                                                                                         | 2.9 | 11        |
| 9  | Microstructure and Corrosion Resistance of AA4047/AA7075 Transition Zone Formed Using Electron<br>Beam Wire-Feed Additive Manufacturing. Materials, 2021, 14, 6931.                                                                                    | 2.9 | 6         |
| 10 | Production of gradient intermetallic layers based on aluminum alloy and copper by electron-beam additive technology. Diagnostics Resource and Mechanics of Materials and Structures, 2021, , 19-31.                                                    | 0.1 | 0         |
| 11 | Microstructure of In-Situ Friction Stir Processed Al-Cu Transition Zone. Metals, 2020, 10, 818.                                                                                                                                                        | 2.3 | 19        |
| 12 | Ultrasonic Laser Welding of AA5083 Aluminum-Magnesium Alloy. Metal Working and Material Science, 2019, 21, 83-96.                                                                                                                                      | 0.3 | 0         |
| 13 | The Effect of Porosity and Grain Size on the Phase Composition and Mechanical Properties of Zirconium-Dioxide-Based Ceramic. Technical Physics Letters, 2018, 44, 663-666.                                                                             | 0.7 | 16        |
| 14 | Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-feed<br>electron beam additive manufactured 304 stainless steel. International Journal of Advanced<br>Manufacturing Technology, 2018, 99, 2353-2363. | 3.0 | 74        |
| 15 | Acoustic emission characterization of sliding wear under condition of direct and inverse transformations in low-temperature degradation aged Y-TZP and Y-TZP-AL2O3. Friction, 2018, 6, 323-340.                                                        | 6.4 | 17        |
| 16 | Features of the Structural-Phase State of the Alloy Ti-6Al-4V in the Formation of Products using<br>Wire-Feed Electron Beam Additive Manufacturing. Metal Working and Material Science, 2018, 20, 60-71.                                               | 0.3 | 3         |
| 17 | Inelastic behavior of ceramics with hierarchical pore structure under compression. Technical Physics Letters, 2017, 43, 723-726.                                                                                                                       | 0.7 | 22        |
| 18 | Structures Formation on the Y-TZP-AI2O3Ceramic Composites Surface. IOP Conference Series:<br>Materials Science and Engineering, 2016, 140, 012012.                                                                                                     | 0.6 | 1         |

Nickolai L Savchenko

| #  | Article                                                                                                                                                                                       | IF               | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 19 | X-Ray Diffraction Analysis of the Sintered Y-TZP-Al2O3Ceramics. IOP Conference Series: Materials Science and Engineering, 2016, 140, 012015.                                                  | 0.6              | 0            |
| 20 | Deformation and Fracture of Porous Brittle Materials Under Different Loading Schemes. Russian<br>Physics Journal, 2016, 58, 1544-1548.                                                        | 0.4              | 22           |
| 21 | The influence of porosity on the elasticity and strength of alumina and zirconia ceramics. AIP Conference Proceedings, 2014, , .                                                              | 0.4              | 25           |
| 22 | Behavior of the submicrocrystalline Y–TZP–Al2O3 composite in dry friction with steel. Powder<br>Metallurgy and Metal Ceramics, 2013, 51, 577-583.                                             | 0.8              | 2            |
| 23 | Structural and phase binder state and behavior during friction of WC-(Fe-Mn-C) composites. Journal of Friction and Wear, 2010, 31, 281-287.                                                   | 0.5              | 3            |
| 24 | Wear of ceramic and ceramic–metal composites in high-speed dry sliding over steel. Powder<br>Metallurgy and Metal Ceramics, 2009, 48, 27-33.                                                  | 0.8              | 1            |
| 25 | Features of high-speed wear of WC-steel 11G13 material in contact with cast tool steel. Journal of Friction and Wear, 2009, 30, 46-52.                                                        | 0.5              | 16           |
| 26 | Friction and wear of Y-TZP and Y-TZP-Al2O3 ceramics in high-speed sliding on steel. Journal of Friction and Wear, 2009, 30, 444-448.                                                          | 0.5              | 8            |
| 27 | Structures formed during the friction of a metal-ceramic composite on steel under high-velocity sliding conditions. Technical Physics Letters, 2009, 35, 107-110.                             | 0.7              | 7            |
| 28 | Texture formation on the friction surface in transformation-toughened ceramics. Technical Physics<br>Letters, 2004, 30, 12-14.                                                                | 0.7              | 10           |
| 29 | Surface wear structures and mechanisms in zirconia-based ceramics. Technical Physics Letters, 2004, 30, 654-656.                                                                              | 0.7              | 2            |
| 30 | Wear and friction of transformation-toughened CMC and MMC. Wear, 2001, 249, 892-900.                                                                                                          | 3.1              | 8            |
| 31 | Structural changes of the friction surface and wear resistance of a ZrO2-Y2O3 ceramic. Technical Physics Letters, 2000, 26, 461-463.                                                          | 0.7              | 1            |
| 32 | Vacuum sintering of plasmochemical powders based on ZrO2. 1. Effect of sintering temperature on properties of ceramics. Powder Metallurgy and Metal Ceramics, 1995, 33, 571-574.              | 0.8              | 0            |
| 33 | High temperature vacuum sintering of plasmochemical powders based on ZrO2. Powder Metallurgy and Metal Ceramics, 1995, 33, 25-28.                                                             | 0.8              | 2            |
| 34 | Phase composition and mechanical properties of a zirconium dioxide based ceramic obtained by high temperature sintering in a vacuum. Powder Metallurgy and Metal Ceramics, 1994, 32, 839-843. | 0.8              | 7            |
| 35 | Vacuum sintering of a ceramic based on zirconium dioxide. Glass and Ceramics (English Translation of) Tj ETQq1                                                                                | 1 0.78431<br>0.6 | 4 rgBT /Over |
| 36 | Combined mechanism for the hardening of a ZrO2-Y2O3 ceramic. Russian Physics Journal, 1994, 37, 775-779.                                                                                      | 0.4              | 0            |