Stephen Hart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1559068/publications.pdf

Version: 2024-02-01

114418 101496 4,422 114 36 63 citations h-index g-index papers 116 116 116 4468 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Lipid-peptide nanocomplexes for mRNA delivery in vitro and in vivo. Journal of Controlled Release, 2022, 348, 786-797.	4.8	16
2	Assembly strategy of liposome and polymer systems for siRNA delivery. International Journal of Pharmaceutics, 2021, 592, 120033.	2.6	32
3	CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opinion on Biological Therapy, 2021, 21, 1-14.	1.4	9
4	Higher throughput drug screening for rare respiratory diseases: Readthrough therapy in primary ciliary dyskinesia. European Respiratory Journal, 2021, 58, 2000455.	3.1	13
5	Integrinâ€Targeted, Short Interfering RNA Nanocomplexes for Neuroblastoma Tumorâ€Specific Delivery Achieve <i>MYCN</i> Silencing with Improved Survival. Advanced Functional Materials, 2021, 31, 2104843.	7.8	12
6	Allele-Specific Small Interfering RNA CorrectsÂAberrant Cellular Phenotype inÂKeratitis-Ichthyosis-Deafness SyndromeÂKeratinocytes. Journal of Investigative Dermatology, 2020, 140, 1035-1044.e7.	0.3	18
7	Liposomal delivery of hydrophobic RAMBAs provides good bioavailability and significant enhancement of retinoic acid signalling in neuroblastoma tumour cells. Journal of Drug Targeting, 2020, 28, 643-654.	2.1	4
8	The liposomal delivery of hydrophobic oxidovanadium complexes imparts highly effective cytotoxicity and differentiating capacity in neuroblastoma tumour cells. Scientific Reports, 2020, 10, 16660.	1.6	7
9	Toward gene therapy in rheumatoid arthritis. Expert Review of Precision Medicine and Drug Development, 2020, 5, 123-133.	0.4	4
10	New approaches to genetic therapies for cystic fibrosis. Journal of Cystic Fibrosis, 2020, 19, S54-S59.	0.3	46
11	Silencing E3 Ubiqutin ligase ITCH as a potential therapy to enhance chemotherapy efficacy in p53 mutant neuroblastoma cells. Scientific Reports, 2020, 10, 1046.	1.6	11
12	<i>MYCN</i> Silencing by RNAi Induces Neurogenesis and Suppresses Proliferation in Models of Neuroblastoma with Resistance to Retinoic Acid. Nucleic Acid Therapeutics, 2020, 30, 237-248.	2.0	9
13	The discovery and enhanced properties of trichain lipids in lipopolyplex gene delivery systems. Organic and Biomolecular Chemistry, 2019, 17, 945-957.	1.5	8
14	A Nanosensor Toolbox for Rapid, Label-Free Measurement of Airway Surface Liquid and Epithelial Cell Function. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8731-8739.	4.0	6
15	Targeted suicide gene transfections reveal promising results in nu/nu mice with aggressive neuroblastoma. Journal of Controlled Release, 2018, 275, 208-216.	4.8	12
16	A beginner's guide to gene editing. Experimental Physiology, 2018, 103, 439-448.	0.9	12
17	Development of Targeted siRNA Nanocomplexes to Prevent Fibrosis in Experimental Glaucoma Filtration Surgery. Molecular Therapy, 2018, 26, 2812-2822.	3.7	36
18	Gene editing and gene regulation with CRISPR. Experimental Physiology, 2018, 103, 437-438.	0.9	3

#	Article	IF	Citations
19	Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung. Thorax, 2018, 73, 847-856.	2.7	50
20	Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: Targetable nanocomplexes for in vivo nucleic acid delivery. Acta Biomaterialia, 2017, 51, 351-362.	4.1	28
21	BMI-1 extends proliferative potential of human bronchial epithelial cells while retaining their mucociliary differentiation capacity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L258-L267.	1.3	40
22	Delivery of ENaC siRNA to epithelial cells mediated by a targeted nanocomplex: a therapeutic strategy for cystic fibrosis. Scientific Reports, 2017, 7, 700.	1.6	51
23	Prospects for RNA delivery with nanotechnologies. Gene Therapy, 2017, 24, 121-121.	2.3	2
24	Genotype-Phenotype Associations of <i>IL6</i> and <i>PRG4</i> With Conjunctival Fibrosis After Glaucoma Surgery. JAMA Ophthalmology, 2017, 135, 1147.	1.4	13
25	Genome-wide RNA-Sequencing analysis identifies a distinct fibrosis gene signature in the conjunctiva after glaucoma surgery. Scientific Reports, 2017, 7, 5644.	1.6	16
26	Genetic therapies for cystic fibrosis lung disease. Current Opinion in Pharmacology, 2017, 34, 119-124.	1.7	27
27	23. SiRNA and CRISPR/Cas9 Mediated Knockout of αENAC. Molecular Therapy, 2016, 24, S11.	3.7	0
28	588. MYCN Silencing Using RNA Interference Causes Apoptosis and Differentiation in MYCN Amplified Neuroblastoma Cell Lines. Molecular Therapy, 2016, 24, S233.	3.7	0
29	Systematic Comparisons of Formulations of Linear Oligolysine Peptides with si <scp>RNA</scp> and Plasmid <scp>DNA</scp> . Chemical Biology and Drug Design, 2016, 87, 747-763.	1.5	24
30	A critical role for ATF2 transcription factor in the regulation of E-selectin expression in response to non-endotoxin components of Neisseria meningitidis. Cellular Microbiology, 2016, 18, 66-79.	1.1	5
31	Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Scientific Reports, 2016, 6, 21881.	1.6	44
32	Minicircle DNA Provides Enhanced and Prolonged Transgene Expression Following Airway Gene Transfer. Scientific Reports, 2016, 6, 23125.	1.6	50
33	155. Lipid-Peptide Receptor-Targeted siRNA Nanoparticles for Systemic Delivery To Tumours. Molecular Therapy, 2015, 23, S62.	3.7	0
34	A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency. International Journal of Nanomedicine, 2015, 10, 2673.	3.3	13
35	Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector. Scientific Reports, 2015, 5, 9292.	1.6	34
36	Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides. Journal of Controlled Release, 2015, 206, 75-90.	4.8	25

3

#	Article	IF	Citations
37	Receptor-targeted liposome-peptide-siRNA nanoparticles represent a novel and efficient siRNA delivery system to prevent conjunctival fibrosis. Acta Ophthalmologica, 2015, 93, n/a-n/a.	0.6	O
38	Combined exome and whole-genome sequencing identifies mutations in <i>ARMC4</i> as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. Journal of Medical Genetics, 2014, 51, 61-67.	1.5	88
39	PEGylation improves the receptor-mediated transfection efficiency of peptide-targeted, self-assembling, anionic nanocomplexes. Journal of Controlled Release, 2014, 174, 177-187.	4.8	47
40	Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery. Biomaterials, 2014, 35, 8406-8415.	5.7	64
41	The Role of the Helper Lipid on the DNA Transfection Efficiency of Lipopolyplex Formulations. Scientific Reports, 2014, 4, 7107.	1.6	145
42	Multifunctional receptor-targeted nanocomplexes for the delivery of therapeutic nucleic acids to the Brain. Biomaterials, 2013, 34, 9190-9200.	5.7	49
43	Gene Delivery Using Ternary Lipopolyplexes Incorporating Branched Cationic Peptides: The Role of Peptide Sequence and Branching. Molecular Pharmaceutics, 2013, 10, 127-141.	2.3	29
44	Comparison of Nanocomplexes with Branched and Linear Peptides for SiRNA Delivery. Biomacromolecules, 2013, 14, 761-770.	2.6	23
45	Airway Deposition of Nebulized Gene Delivery Nanocomplexes Monitored by Radioimaging Agents. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 471-480.	1.4	15
46	Inhibition of neointimal hyperplasia in a rabbit vein graft model following non-viral transfection with human iNOS cDNA. Gene Therapy, 2013, 20, 979-986.	2.3	20
47	Multifunctional receptor-targeted nanocomplexes for magnetic resonance imaging and transfection of tumours. Biomaterials, 2012, 33, 7241-7250.	5.7	25
48	Lipid peptide nanocomplexes for gene delivery and magnetic resonance imaging in the brain. Journal of Controlled Release, 2012, 162, 340-348.	4.8	32
49	Elemental imaging of MRI contrast agents: benchmarking of LA-ICP-MS to MRI. Analytical and Bioanalytical Chemistry, 2012, 403, 1641-1649.	1.9	25
50	Lipid chain geometry of C14 glycerol-based lipids: effect on lipoplex structure and transfection. Molecular BioSystems, 2011, 7, 422-436.	2.9	8
51	Integrin-targeted nanocomplexes for tumour specific delivery and therapy by systemic administration. Biomaterials, 2011, 32, 1370-1376.	5.7	53
52	Receptor-targeted liposome-peptide nanocomplexes for siRNA delivery. Biomaterials, 2011, 32, 6302-6315.	5.7	76
53	Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 210-219.	1.7	114
54	Nebulisation of Receptor-Targeted Nanocomplexes for Gene Delivery to the Airway Epithelium. PLoS ONE, 2011, 6, e26768.	1.1	35

#	Article	IF	CITATIONS
55	Multifunctional nanocomplexes for gene transfer and gene therapy. Cell Biology and Toxicology, 2010, 26, 69-81.	2.4	64
56	Tumorâ€specific gene transfer with receptorâ€mediated nanocomplexes modified by polyethylene glycol shielding and endosomally cleavable lipid and peptide linkers. FASEB Journal, 2010, 24, 2301-2313.	0.2	52
57	Stabilized Integrin-Targeting Ternary LPD (Lipopolyplex) Vectors for Gene Delivery Designed To Disassemble Within the Target Cell. Bioconjugate Chemistry, 2009, 20, 518-532.	1.8	39
58	Synthesis of Bifunctional Integrinâ€Binding Peptides Containing PEG Spacers of Defined Length for Nonâ€Viral Gene Delivery. European Journal of Organic Chemistry, 2008, 2008, 2900-2914.	1.2	13
59	Mono- and dicationic short PEG and methylene dioxyalkylglycerols for use in synthetic gene delivery systems. Organic and Biomolecular Chemistry, 2008, 6, 2554.	1.5	20
60	Acid cleavable PEG-lipids for applications in a ternary gene delivery vector. Molecular BioSystems, 2008, 4, 532.	2.9	27
61	A Receptor-targeted Nanocomplex Vector System Optimized for Respiratory Gene Transfer. Molecular Therapy, 2008, 16, 907-915.	3.7	59
62	Receptor-targeted Nanocomplexes optimized for Gene Transfer to Primary Vascular Cells and Explant Cultures of Rabbit Aorta. Molecular Therapy, 2008, 16, 508-515.	3.7	23
63	Immunotherapy for neuroblastoma using syngeneic fibroblasts transfected with IL-2 and IL-12. British Journal of Cancer, 2007, 97, 210-217.	2.9	33
64	Biophysical Characterization of an Integrin-Targeted Lipopolyplex Gene Delivery Vector. Biochemistry, 2007, 46, 12930-12944.	1.2	33
65	Targeting Lipopolyplexes Using Bifunctional Peptides Incorporating Hydrophobic Spacer Amino Acids: Synthesis, Transfection, and Biophysical Studies. Bioconjugate Chemistry, 2007, 18, 1800-1810.	1.8	14
66	Analysis and Optimization of the Cationic Lipid Component of a Lipid/Peptide Vector Formulation for Enhanced Transfection In Vitro and In Vivo. Journal of Liposome Research, 2006, 16, 373-389.	1.5	22
67	Application to Vascular Adventitia of a Nonviral Vector for TIMP-1 Gene Therapy to Prevent Intimal Hyperplasia. Human Gene Therapy, 2006, 17, 717-727.	1.4	15
68	540. Genetic Intervention towards Improving the Long Term Outcome of CABG Using a Lipid Peptide DNA Vector System. Molecular Therapy, 2006, 13, S207-S208.	3.7	0
69	696. Development of Lipid/Peptide (Lip/Tide) Vectors for Respiratory Gene Transfer. Molecular Therapy, 2006, 13, S269-S270.	3.7	O
70	1080. Receptor-Targeting Smart Vectors for Efficient Gene Transfer to Tumours. Molecular Therapy, 2006, 13, S414.	3.7	0
71	Calcineurin regulates NFAT-dependent iNOS expression and protection of cardiomyocytes: Co-operation with Src tyrosine kinase. Cardiovascular Research, 2006, 71, 672-683.	1.8	43
72	Application to Vascular Adventitia of a Nonviral Vector for TIMP-1 Gene Therapy to Prevent Intimal Hyperplasia. Human Gene Therapy, 2006, .	1.4	0

#	Article	IF	Citations
73	Efficient Gene Transfer by Lipid/Peptide Transfection Complexes. , 2006, , 293-316.		О
74	The fractal structure of polycation–DNA complexes. Biotechnology and Applied Biochemistry, 2005, 41, 127.	1.4	8
75	Lipid Carriers for Gene Therapy. Current Drug Delivery, 2005, 2, 423-428.	0.8	54
76	Transbronchial biopsies provide longitudinal evidence for epithelial chimerism in children following sex mismatched lung transplantation. Thorax, 2005, 60, 60-62.	2.7	60
77	Rate of transport of l-arginine is independent of the expression of inducible nitric oxide synthase in HEK 293 cells. Nitric Oxide - Biology and Chemistry, 2005, 12, 21-30.	1.2	5
78	Targeted Gene Delivery to Human Airway Epithelial Cells with Synthetic Vectors Incorporating Novel Targeting Peptides Selected by Phage Display. Journal of Drug Targeting, 2004, 12, 185-193.	2.1	49
79	Efficient transfection of non-proliferating human airway epithelial cells with a synthetic vector system. Journal of Gene Medicine, 2004, 6, 210-221.	1.4	26
80	Severity of Lung Injury in Cyclooxygenase-2-Deficient Mice Is Dependent on Reduced Prostaglandin E2 Production. American Journal of Pathology, 2004, 165, 1663-1676.	1.9	111
81	Functional delivery of large genomic DNA to human cells with a peptide-lipid vector. Journal of Gene Medicine, 2003, 5, 883-892.	1.4	29
82	Formation of LID vector complexes in water alters physicochemical properties and enhances pulmonary gene expression in vivo. Gene Therapy, 2003, 10, 1026-1034.	2.3	27
83	Enhancement of integrin-mediated transfection of haematopoietic cells with a synthetic vector system. Biotechnology and Applied Biochemistry, 2003, 38, 201.	1.4	10
84	Prediction of size distribution of lipidâ€'peptideâ€'DNA vector particles using Monte Carlo simulation techniques. Biotechnology and Applied Biochemistry, 2003, 38, 95.	1.4	7
85	Improved antitumour immunity in murine neuroblastoma using a combination of IL-2 and IL-12. British Journal of Cancer, 2003, 88, 1641-1648.	2.9	33
86	Large Animal Models: Bridging the Gap. Molecular Therapy, 2003, 8, 528-529.	3.7	2
87	Biophysical characterization of an integrin-targeted non-viral vector. Medical Science Monitor, 2003, 9, BR54-61.	0.5	8
88	Cyclooxygenase-2 Overexpression, Using an Integrin-Targeted Gene Delivery System (the LID Vector), Inhibits Fibroblast Proliferation In Vitro and Leads to Increased Prostaglandin E2 in the Lung. Chest, 2002, 121, 102S-104S.	0.4	13
89	High efficiency transfection of porcine vascular cellsin vitro with a synthetic vector system. Journal of Gene Medicine, 2002, 4, 292-299.	1.4	26
90	Evaluation of a porcine model for pulmonary gene transfer using a novel synthetic vector. Journal of Gene Medicine, 2002, 4, 438-446.	1.4	44

#	Article	IF	CITATIONS
91	Effective gene transfer to solid tumors using different nonviral gene delivery techniques: Electroporation, liposomes, and integrin-targeted vector. Cancer Gene Therapy, 2002, 9, 399-406.	2.2	98
92	Cyclooxygenase-2 Deficiency Results in a Loss of the Anti-Proliferative Response to Transforming Growth Factor-Î ² in Human Fibrotic Lung Fibroblasts and Promotes Bleomycin-Induced Pulmonary Fibrosis in Mice. American Journal of Pathology, 2001, 158, 1411-1422.	1.9	236
93	In vivo myocardial gene transfer: Optimization, evaluation and direct comparison of gene transfer vectors. Basic Research in Cardiology, 2001, 96, 227-236.	2.5	86
94	Non-viral, integrin-mediated gene transfer into fibroblasts from patients with lysosomal storage diseases. Journal of Gene Medicine, 2001, 3, 488-497.	1.4	10
95	An integrin-targeted non-viral vector for pulmonary gene therapy. Gene Therapy, 2000, 7, 393-400.	2.3	85
96	Stable integration of large (>100 kb) PAC constructs in HaCaT keratinocytes using an integrin-targeting peptide delivery system. Gene Therapy, 2000, 7 , $1600-1605$.	2.3	34
97	Adhesion molecules and gene transfer. Advanced Drug Delivery Reviews, 2000, 44, 135-152.	6.6	30
98	Synthetic vectors for gene therapy. Expert Opinion on Therapeutic Patents, 2000, 10, 199-208.	2.4	11
99	Gene delivery to hypoxic cells in vitro. British Journal of Cancer, 2000, 83, 662-667.	2.9	21
100	Use of Adhesion Molecules for Gene Delivery. Nephron Experimental Nephrology, 1999, 7, 193-199.	2.4	11
101	High-Titer Recombinant Adeno-Associated Virus Production from Replicating Amplicons and Herpes Vectors Deleted for Glycoprotein H. Human Gene Therapy, 1999, 10, 2527-2537.	1.4	47
102	Integrin-mediated vectors for gene transfer and therapy. Current Opinion in Molecular Therapeutics, 1999, 1, 197-203.	2.8	7
103	An RGD–Oligolysine Peptide: A Prototype Construct for Integrin-Mediated Gene Delivery. Human Gene Therapy, 1998, 9, 1037-1047.	1.4	184
104	Lipid-Mediated Enhancement of Transfection by a Nonviral Integrin-Targeting Vector. Human Gene Therapy, 1998, 9, 575-585.	1.4	183
105	Recombinant HMG1 Protein Produced in Pichia pastoris: A Nonviral Gene Delivery Agent. BioTechniques, 1997, 22, 718-729.	0.8	48
106	Integrin-mediated transfection with peptides containing arginine-glycine-aspartic acid domains. Gene Therapy, 1997, 4, 1225-1230.	2.3	97
107	High Yield Incorporation of Plasmid DNA within Liposomes: Effect on DNA Integrity and Transfection Efficiency. Journal of Drug Targeting, 1996, 3, 469-475.	2.1	65
108	Integrin-Mediated Gene Delivery. , 1996, , 101-106.		0

#	Article	IF	CITATIONS
109	Efficient Incorporation of Plasmid DNA Within Liposomes of Varying Structural Characteristics: Liposomal DNA Integrity and Transfection Efficiency., 1996,, 143-150.		O
110	The introduction of two silent mutations into a CFTR cDNA construct allows improved detection of exogenous mRNA in gene transfer experiments. Human Molecular Genetics, 1995, 4, 1597-1602.	1.4	6
111	Gene delivery and expression mediated by an integrin-binding peptide. Gene Therapy, 1995, 2, 552-4.	2.3	115
112	Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide. Journal of Biological Chemistry, 1994, 269, 12468-74.	1.6	122
113	Non–invasive liposome–mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nature Genetics, 1993, 5, 135-142.	9.4	425
114	Effective gene transfer to solid tumors using different nonviral gene delivery techniques: Electroporation, liposomes, and integrin-targeted vector. , 0, .		1