Satya Parida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1558861/publications.pdf

Version: 2024-02-01

115	4,185	36	58
papers	citations	h-index	g-index
117	117	117	1931 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Environmental sampling for the detection of footâ€andâ€mouth disease virus and peste des petits ruminants virus in a live goat market, Nepal. Transboundary and Emerging Diseases, 2022, 69, 3041-3046.	1.3	8
2	Development and Evaluation of Molecular Pen-Side Assays without Prior RNA Extraction for Peste des Petits Ruminants (PPR) and Foot and Mouth Disease (FMD). Viruses, 2022, 14, 835.	1.5	0
3	Progress towards Eradication of Peste des Petits Ruminants through Vaccination. Viruses, 2021, 13, 59.	1.5	26
4	Development and Validation of a Mucosal Antibody (IgA) Test to Identify Persistent Infection with Foot-and-Mouth Disease Virus. Viruses, 2021, 13, 814.	1.5	1
5	Peste des Petits Ruminants Virus Infection at the Wildlife–Livestock Interface in the Greater Serengeti Ecosystem, 2015–2019. Viruses, 2021, 13, 838.	1.5	16
6	Development and Validation of Confirmatory Foot-and-Mouth Disease Virus Antibody ELISAs to Identify Infected Animals in Vaccinated Populations. Viruses, 2021, 13, 914.	1.5	4
7	Development of Nanobodies Targeting Peste des Petits Ruminants Virus: The Prospect in Disease Diagnosis and Therapy. Animals, 2021, 11, 2206.	1.0	4
8	Molecular Basis of Antigenic Drift in Serotype O Foot-and-Mouth Disease Viruses (2013–2018) from Southeast Asia. Viruses, 2021, 13, 1886.	1.5	6
9	Ongoing Assessment of the Molecular Evolution of Peste Des Petits Ruminants Virus Continues to Question Viral Origins. Viruses, 2021, 13, 2144.	1.5	8
10	Complete Genome Sequencing of Field Isolates of Peste des Petits Ruminants Virus from Tanzania Revealed a High Nucleotide Identity with Lineage III PPR Viruses. Animals, 2021, 11, 2976.	1.0	5
11	Development and Evaluation of a Nested PCR for Improved Diagnosis and Genetic Analysis of Peste des Petits Ruminants Virus (PPRV) for Future Use in Nascent PPR Eradication Programme. Animals, 2021, 11, 3170.	1.0	0
12	Exchange of C-Terminal Variable Sequences within Morbillivirus Nucleocapsid Protein Are Tolerated: Development and Evaluation of Two Marker (DIVA) Vaccines (Sungri/96 DIVA, Nigeria/75/1 DIVA) against PPR. Viruses, 2021, 13, 2320.	1.5	4
13	Retrospective Characterization of Initial Peste des petits ruminants Outbreaks (2008–2012) in the Democratic Republic of the Congo. Viruses, 2021, 13, 2373.	1.5	O
14	Outbreak of Peste des Petits Ruminants among Critically Endangered Mongolian Saiga and Other Wild Ungulates, Mongolia, 2016–2017. Emerging Infectious Diseases, 2020, 26, 51-62.	2.0	59
15	Eradication of Peste des Petits Ruminants Virus and the Wildlife-Livestock Interface. Frontiers in Veterinary Science, 2020, 7, 50.	0.9	33
16	Characterisation of Peste Des Petits Ruminants Disease in Pastoralist Flocks in Ngorongoro District of Northern Tanzania and Bluetongue Virus Co-Infection. Viruses, 2020, 12, 389.	1.5	19
17	Peste des Petits Ruminants at the Wildlife–Livestock Interface in the Northern Albertine Rift and Nile Basin, East Africa. Viruses, 2020, 12, 293.	1.5	26
18	Detection of Bovine Antibodies against a Conserved Capsid Epitope as the Basis of a Novel Universal Serological Test for Foot-and-Mouth Disease. Journal of Clinical Microbiology, 2020, 58, .	1.8	6

#	Article	IF	CITATIONS
19	RNAseq Reveals the Contribution of Interferon Stimulated Genes to the Increased Host Defense and Decreased PPR Viral Replication in Cattle. Viruses, 2020, 12, 463.	1.5	11
20	Comparison of Immunogenicity and Protective Efficacy of PPR Live Attenuated Vaccines (Nigeria 75/1) Tj ETQq0	0 0 rgBT /	Overlock 10 T
21	Rapid Detection of Peste des Petits Ruminants Virus (PPRV) Nucleic Acid Using a Novel Low-Cost Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Assay for Future Use in Nascent PPR Eradication Programme. Viruses, 2019, 11, 699.	1.5	22
22	Quantifying Levels of Peste Des Petits Ruminants (PPR) Virus in Excretions from Experimentally Infected Goats and Its Importance for Nascent PPR Eradication Programme. Viruses, 2019, 11, 249.	1.5	25
23	Optimization and evaluation of a non-invasive tool for peste des petits ruminants surveillance and control. Scientific Reports, 2019, 9, 4742.	1.6	24
24	Molecular characterization of Peste des petits ruminants viruses in the Marmara Region of Turkey. Transboundary and Emerging Diseases, 2019, 66, 865-872.	1.3	22
25	Identification of novel epitopes in serotype O foot-and-mouth disease virus by in vitro immune selection. Journal of General Virology, 2019, 100, 804-811.	1.3	8
26	Molecular detection, isolation and characterization of Peste-des-petits ruminants virus from goat milk from outbreaks in Bangladesh and its implication for eradication strategy. Transboundary and Emerging Diseases, 2018, 65, 1597-1604.	1.3	23
27	Foot and mouth disease vaccine strain selection: current approaches and future perspectives. Expert Review of Vaccines, 2018, 17, 577-591.	2.0	70
28	Detection of foot-and-mouth disease virus in milk samples by real-time reverse transcription polymerase chain reaction: Optimisation and evaluation of a high-throughput screening method with potential for disease surveillance. Veterinary Microbiology, 2018, 223, 189-194.	0.8	18
29	Waves of endemic foot-and-mouth disease in eastern Africa suggest feasibility of proactive vaccination approaches. Nature Ecology and Evolution, 2018, 2, 1449-1457.	3.4	66
30	Monoclonal antibody resistant mutant of Peste des petits ruminants vaccine virus. Virus Disease, 2018, 29, 520-530.	1.0	2
31	Selection of vaccine strains for serotype O foot-and-mouth disease viruses (2007–2012) circulating in Southeast Asia, East Asia and Far East. Vaccine, 2017, 35, 7147-7153.	1.7	41
32	Genetic and antigenic characterization of serotype O FMD viruses from East Africa for the selection of suitable vaccine strain. Vaccine, 2017, 35, 6842-6849.	1.7	38
33	Serological Detection of Antibodies to Peste des Petits Ruminants Virus in Large Ruminants. Transboundary and Emerging Diseases, 2017, 64, 513-519.	1.3	39
34	Peste des petits ruminants (PPR): A neglected tropical disease in Maghreb region of North Africa and its threat to Europe. PLoS ONE, 2017, 12, e0175461.	1.1	41
35	Persistence of Lineage IV Peste-des-petits ruminants virus within Israel since 1993: An evolutionary perspective. PLoS ONE, 2017, 12, e0177028.	1.1	17
36	Emergence of antigenic variants within serotype A FMDV in the Middle East with antigenically critical amino acid substitutions. Vaccine, 2016, 34, 3199-3206.	1.7	28

#	Article	IF	CITATIONS
37	Re-emergence of Peste des Petits Ruminants virus in 2015 in Morocco: Molecular characterization and experimental infection in Alpine goats. Veterinary Microbiology, 2016, 197, 137-141.	0.8	20
38	Emergence of PPR and its threat to Europe. Small Ruminant Research, 2016, 142, 16-21.	0.6	53
39	Emergence of Lineage IV Peste des Petits Ruminants Virus in Ethiopia: Complete Genome Sequence of an Ethiopian Isolate 2010. Transboundary and Emerging Diseases, 2016, 63, 435-442.	1.3	27
40	Tracking the Antigenic Evolution of Foot-and-Mouth Disease Virus. PLoS ONE, 2016, 11, e0159360.	1.1	32
41	Eradicating Peste des Petits Ruminants - The Challenges Ahead. British Journal of Virology, 2016, 3, 47-52.	0.4	4
42	Contribution of epidemiological knowledge and control strategies in the eradication of rinderpest virus , 2016 , , $81-97$.		0
43	Serological profile of foot-and-mouth disease in wildlife populations of West and Central Africa with special reference to Syncerus caffer subspecies. Veterinary Research, 2015, 46, 77.	1.1	23
44	Detection and Genetic Characterization of Lineage IV Peste Des Petits Ruminant Virus in Kazakhstan. Transboundary and Emerging Diseases, 2015, 62, 470-479.	1.3	24
45	Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania. Emerging Infectious Diseases, 2015, 21, 2230-2234.	2.0	76
46	Virus Excretion from Foot-And-Mouth Disease Virus Carrier Cattle and Their Potential Role in Causing New Outbreaks. PLoS ONE, 2015, 10, e0128815.	1.1	57
47	Molecular Epidemiology of Peste des Petits Ruminants Virus. , 2015, , 69-93.		4
48	Rescue of a vaccine strain of peste des petits ruminants virus: In vivo evaluation and comparison with standard vaccine. Vaccine, 2015, 33, 465-471.	1.7	30
49	Antigenic and genetic comparison of foot-and-mouth disease virus serotype O Indian vaccine strain, O/IND/R2/75 against currently circulating viruses. Vaccine, 2015, 33, 693-700.	1.7	40
50	Prediction and characterization of novel epitopes of serotype A foot-and-mouth disease viruses circulating in East Africa using site-directed mutagenesis. Journal of General Virology, 2015, 96, 1033-1041.	1.3	19
51	Complete Genome Sequences of Serotype O Foot-and-Mouth Disease Viruses Recovered from Experimental Persistently Infected Cattle. Genome Announcements, 2015, 3, .	0.8	1
52	Development of a Competitive Enzyme-Linked Immunosorbent Assay for Detection of Antibodies against the 3B Protein of Foot-and-Mouth Disease Virus. Vaccine Journal, 2015, 22, 389-397.	3.2	13
53	Peste des petits ruminants. Veterinary Microbiology, 2015, 181, 90-106.	0.8	187
54	Pathology of Peste des Petits Ruminants. , 2015, , 51-67.		7

#	Article	IF	CITATIONS
55	Peste of Small Ruminants in Algeria: Virus Circulation by Serosurvey Preliminary Results. Egyptian Journal of Sheep and Goat Sciences, 2015, 10, 38-39.	0.1	1
56	Molecular characterisation of lineage IV peste des petits ruminants virus using multi gene sequence data. Veterinary Microbiology, 2014, 174, 39-49.	0.8	56
57	Complete Genome Sequences of Lineage III Peste des Petits Ruminants Viruses from the Middle East and East Africa. Genome Announcements, 2014, 2, .	0.8	34
58	Molecular Evolution of Peste des Petits Ruminants Virus. Emerging Infectious Diseases, 2014, 20, 2023-2033.	2.0	78
59	Peste des Petits Ruminants Virus, Eastern Asia. Emerging Infectious Diseases, 2014, 20, 2176-2178.	2.0	37
60	Molecular characterization of peste-des-petits ruminants virus (PPRV) isolated from an outbreak in the Indo-Bangladesh border of Tripura state of North-East India. Veterinary Microbiology, 2014, 174, 591-595.	0.8	21
61	Evolutionary genetics underlying the spread of peste des petits ruminants virus. Animal Frontiers, 2014, 4, 14-20.	0.8	106
62	Patterns of Foot-and-Mouth Disease Virus Distribution in Africa. , 2014, , 21-38.		10
63	Morbillivirus vaccines: Recent successes and future hopes. Vaccine, 2014, 32, 3155-3161.	1.7	26
64	Genetic and antigenic characterisation of serotype A FMD viruses from East Africa to select new vaccine strains. Vaccine, 2014, 32, 5794-5800.	1.7	39
65	Detection of subclinical peste des petits ruminants virus infection in experimental cattle. VirusDisease, 2014, 25, 408-411.	1.0	25
66	Transmission of foot-and-mouth disease virus from experimentally infected Indian buffalo (Bubalus) Tj ETQq0 0 () rgBJ /Ov	erlock 10 Tf 5
67	Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle. Veterinary Microbiology, 2014, 169, 58-66.	0.8	13
68	Toll-Like Receptor Responses to Peste des petits ruminants Virus in Goats and Water Buffalo. PLoS ONE, 2014, 9, e111609.	1.1	28
69	Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity. Journal of Virological Methods, 2013, 187, 406-412.	1.0	51
70	Development and evaluation of a real-time reverse transcription-loop-mediated isothermal amplification assay for rapid serotyping of foot-and-mouth disease virus. Journal of Virological Methods, 2013, 187, 195-202.	1.0	26
71	Complete Genome Sequence of a Peste des Petits Ruminants Virus Recovered from an Alpine Goat during an Outbreak in Morocco in 2008. Genome Announcements, 2013, 1, .	0.8	21
72	Peste des Petits Ruminants Infection among Cattle and Wildlife in Northern Tanzania. Emerging Infectious Diseases, 2013, 19, 2037-2040.	2.0	69

#	Article	IF	CITATIONS
73	Early Events following Experimental Infection with Peste-Des-Petits Ruminants Virus Suggest Immune Cell Targeting. PLoS ONE, 2013, 8, e55830.	1.1	86
74	Complete Genome Sequence of a Peste des Petits Ruminants Virus Recovered from Wild Bharal in Tibet, China. Journal of Virology, 2012, 86, 10885-10886.	1.5	24
75	A Reliable and Reproducible Experimental Challenge Model for Peste des Petits Ruminants Virus. Journal of Clinical Microbiology, 2012, 50, 3738-3740.	1.8	35
76	A novel approach to generating morbillivirus vaccines: Negatively marking the rinderpest vaccine. Vaccine, 2012, 30, 1927-1935.	1.7	14
77	Interferon-Î ³ Induced by In Vitro Re-Stimulation of CD4+ T-Cells Correlates with In Vivo FMD Vaccine Induced Protection of Cattle against Disease and Persistent Infection. PLoS ONE, 2012, 7, e44365.	1.1	39
78	Adenovirus Expressing Human Interferon Inhibits Replication of Foot and Mouth Disease Virus and Reduces Fatal Rate in Mice. Journal of Bacteriology and Virology, 2012, 42, 224.	0.0	2
79	A DNA vaccination regime including protein boost and electroporation protects cattle against foot-and-mouth disease. Antiviral Research, 2012, 94, 25-34.	1.9	29
80	Field application of a recombinant protein-based ELISA during the 2010 outbreak of foot-and-mouth disease type A in South Korea. Journal of Virological Methods, 2012, 179, 265-268.	1.0	12
81	Evaluation of cross-protection between O1 Manisa and O1 Campos in cattle vaccinated with foot-and-mouth disease virus vaccine incorporating different payloads of inactivated O1 Manisa antigen. Vaccine, 2011, 29, 1906-1912.	1.7	42
82	Molecular Characterisation of Foot-and-Mouth Disease Viruses from Pakistan, 2005-2008. Transboundary and Emerging Diseases, 2011, 58, 166-172.	1.3	19
83	Peste des petits ruminants: a suitable candidate for eradication?. Veterinary Record, 2011, 169, 16-21.	0.2	79
84	Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Review of Vaccines, 2010, 9, 73-87.	2.0	61
85	Global distribution of peste des petits ruminants virus and prospects for improved diagnosis and control. Journal of General Virology, 2010, 91, 2885-2897.	1.3	344
86	Longevity of protection in cattle following immunisation with emergency FMD A22 serotype vaccine from the UK strategic reserve. Vaccine, 2010, 28, 2318-2322.	1.7	13
87	Vaccines against peste des petits ruminants virus. Expert Review of Vaccines, 2010, 9, 785-796.	2.0	106
88	The effect of vaccination on undetected persistence of foot-and-mouth disease virus in cattle herds and sheep flocks. Epidemiology and Infection, 2009, 137, 1494-1504.	1.0	10
89	Infectious bursal disease subviral particles displaying the foot-and-mouth disease virus major antigenic site. Vaccine, 2009, 27, 93-98.	1.7	19
90	Vaccination against foot-and-mouth disease virus: strategies and effectiveness. Expert Review of Vaccines, 2009, 8, 347-365.	2.0	174

#	Article	IF	CITATIONS
91	Emergency vaccination of sheep against foot-and-mouth disease: Significance and detection of subsequent sub-clinical infection. Vaccine, 2008, 26, 3469-3479.	1.7	33
92	Serological Survey for Foot-and-Mouth Disease Virus in Wildlife in Eastern Africa and Estimation of Test Parameters of a Nonstructural Protein Enzyme-Linked Immunosorbent Assay for Buffalo. Vaccine Journal, 2008, 15, 1003-1011.	3.2	48
93	Bovine Serum Panel for Evaluating Foot-and-Mouth Disease Virus Nonstructural Protein Antibody Tests. Journal of Veterinary Diagnostic Investigation, 2007, 19, 539-544.	0.5	21
94	Use of a Standardized Bovine Serum Panel To Evaluate a Multiplexed Nonstructural Protein Antibody Assay for Serological Surveillance of Foot-and-Mouth Disease. Vaccine Journal, 2007, 14, 1472-1482.	3.2	14
95	Evaluation of laboratory tests for sat serotypes of foot-and-mouth disease virus with specimens collected from convalescent cattle in Zimbabwe. Veterinary Record, 2007, 160, 647-654.	0.2	13
96	Rescue of a chimeric rinderpest virus with the nucleocapsid protein derived from peste-des-petits-ruminants virus: use as a marker vaccine. Journal of General Virology, 2007, 88, 2019-2027.	1.3	27
97	Chimeric tymovirus-like particles displaying foot-and-mouth disease virus non-structural protein epitopes and its use for detection of FMDV-NSP antibodies. Vaccine, 2007, 25, 4784-4794.	1.7	29
98	Further evaluation of higher potency vaccines for early protection of cattle against FMDV direct contact challenge. Vaccine, 2007, 25, 7687-7695.	1.7	38
99	Reduction of foot-and-mouth disease (FMD) virus load in nasal excretions, saliva and exhaled air of vaccinated pigs following direct contact challenge. Vaccine, 2007, 25, 7806-7817.	1.7	32
100	Importance of the extracellular and cytoplasmic/transmembrane domains of the haemagglutinin protein of rinderpest virus for recovery of viable virus from cDNA copies. Virus Research, 2006, 117, 273-282.	1.1	4
101	Interferon-Î ³ production in vitro from whole blood of foot-and-mouth disease virus (FMDV) vaccinated and infected cattle after incubation with inactivated FMDV. Vaccine, 2006, 24, 964-969.	1.7	56
102	Secretory IgA as an indicator of oro-pharyngeal foot-and-mouth disease virus replication and as a tool for post vaccination surveillance. Vaccine, 2006, 24, 1107-1116.	1.7	59
103	Effect of emergency FMD vaccine antigen payload on protection, sub-clinical infection and persistence following direct contact challenge of cattle. Vaccine, 2006, 24, 3184-3190.	1.7	59
104	Comparative evaluation of six ELISAs for the detection of antibodies to the non-structural proteins of foot-and-mouth disease virus. Vaccine, 2006, 24, 6966-6979.	1.7	176
105	Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle. Vaccine, 2006, 24, 6503-6512.	1.7	99
106	Serological Survey for Potential Disease Agents of Free-ranging Cervids in Six Selected National Parks from Germany. Journal of Wildlife Diseases, 2006, 42, 836-843.	0.3	26
107	Matrix protein and glycoproteins F and H of Peste-des-petits-ruminants virus function better as a homologous complex. Journal of General Virology, 2006, 87, 2021-2029.	1.3	56
108	Development and Evaluation of an Indirect Enzyme-Linked Immunosorbent Assay for Detection of Foot-and-Mouth Disease Virus Nonstructural Protein Antibody using a Chemically Synthesized 2B Peptide as Antigen. Journal of Veterinary Diagnostic Investigation, 2006, 18, 545-552.	0.5	33

Satya Parida

#	ARTICLE	IF	CITATION
109	Utility of automated real-time RT-PCR for the detection of foot-and-mouth disease virus excreted in milk. Veterinary Research, 2006, 37, 121-132.	1.1	34
110	Development of Marker Vaccines for Rinderpest Virus Using Reverse Genetics Technology. , 2005, , 323-333.		1
111	The Plowright vaccine strain of Rinderpest virus has attenuating mutations in most genes. Journal of General Virology, 2005, 86, 1093-1101.	1.3	29
112	Protection against direct-contact challenge following emergency FMD vaccination of cattle and the effect on virus excretion from the oropharynx. Vaccine, 2005, 23, 1106-1113.	1.7	77
113	The application of new techniques to the improved detection of persistently infected cattle after vaccination and contact exposure to foot-and-mouth disease. Vaccine, 2005, 23, 5186-5195.	1.7	41
114	Rinderpest virus lineage differentiation using RT-PCR and SNAP-ELISA. Journal of Virological Methods, 2003, 107, 29-36.	1.0	13
115	Sequence analysis of the phosphoprotein gene of peste des petits ruminants (PPR) virus: editing of the gene transcript. Virus Research, 2003, 96, 85-98.	1.1	53