Brooks D Rabideau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1558824/publications.pdf Version: 2024-02-01

RPOOKS D PARIDEALL

#	Article	IF	CITATIONS
1	Effects of Water Concentration on the Structural and Diffusion Properties of Imidazolium-Based Ionic Liquid–Water Mixtures. Journal of Physical Chemistry B, 2013, 117, 1378-1388.	1.2	111
2	Observed Mechanism for the Breakup of Small Bundles of Cellulose ll $^{\pm}$ and ll 2 in Ionic Liquids from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2013, 117, 3469-3479.	1.2	95
3	Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Physical Chemistry Chemical Physics, 2015, 17, 5767-5775.	1.3	91
4	The Role of the Cation in the Solvation of Cellulose by Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 1621-1629.	1.2	84
5	Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66. Chemical Engineering Science, 2019, 203, 346-357.	1.9	76
6	Cancer Immune Checkpoint Inhibitor Therapy and the Gut Microbiota. Integrative Cancer Therapies, 2019, 18, 153473541984637.	0.8	48
7	Effect of Water Content in <i>N</i> -Methylmorpholine <i>N</i> -Oxide/Cellulose Solutions on Thermodynamics, Structure, and Hydrogen Bonding. Journal of Physical Chemistry B, 2015, 119, 15014-15022.	1.2	38
8	Tuning the melting point of selected ionic liquids through adjustment of the cation's dipole moment. Physical Chemistry Chemical Physics, 2020, 22, 12301-12311.	1.3	36
9	Making good on a promise: ionic liquids with genuinely high degrees of thermal stability. Chemical Communications, 2018, 54, 5019-5031.	2.2	35
10	The extrusion of a model yield stress fluid imaged by MRI velocimetry. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 394-408.	1.0	30
11	An investigation of squeeze flow as a viable technique for determining the yield stress. Rheologica Acta, 2009, 48, 517-526.	1.1	29
12	Computational Predictions of Stable 2D Arrays of Bidisperse Particles. Langmuir, 2005, 21, 10856-10861.	1.6	19
13	The effect of structural modifications on the thermal stability, melting points and ion interactions for a series of tetraaryl-phosphonium-based mesothermal ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 31560-31571.	1.3	19
14	Computational Study of the Self-Organization of Bidisperse Nanoparticles. Langmuir, 2004, 20, 9408-9414.	1.6	13
15	Definition and Computation of Intermolecular Contact in Liquids Using Additively Weighted Voronoi Tessellation. Journal of Physical Chemistry A, 2012, 116, 4657-4666.	1.1	12
16	Water Bridges Substitute for Defects in Amine-Functionalized UiO-66, Boosting CO ₂ Adsorption. Langmuir, 2021, 37, 10439-10449.	1.6	12
17	Internal Flow Characteristics of a Plastic Kaolin Suspension During Extrusion. Journal of the American Ceramic Society, 2012, 95, 494-501.	1.9	11
18	The Effects of Chloride Binding on the Behavior of Cellulose-Derived Solutes in the Ionic Liquid 1-Butyl-3-methylimidazolium Chloride. Journal of Physical Chemistry B, 2012, 116, 9732-9743.	1.2	10

BROOKS D RABIDEAU

#	Article	IF	CITATIONS
19	Molecular Simulation of High-Salinity Brines in Contact with Diisopropylamine and Tripropylamine Solvents. Industrial & Solvents. Industr	1.8	10
20	The role of urea in the solubility of cellulose in aqueous quaternary ammonium hydroxide. RSC Advances, 2020, 10, 5919-5929.	1.7	9
21	Anionic Ring-Opening Polymerizations of <i>N</i> -Sulfonylaziridines in Ionic Liquids. Macromolecules, 2022, 55, 623-629.	2.2	9
22	Observation of Long-Range Orientational Order in Monolayers of Polydisperse Colloids. Langmuir, 2007, 23, 1270-1274.	1.6	8
23	Molecular simulation of the separation of toluene and p-xylene with the thermally-robust ionic liquid triphenyl-p-phenyl sulfonyl phenyl phosphonium. Chemical Engineering Science, 2020, 224, 115790.	1.9	8
24	A Computational Study of the Hydrodynamically Assisted Organization of DNA-Functionalized Colloids in 2D. Langmuir, 2007, 23, 10000-10007.	1.6	3
25	Understanding liquid–liquid equilibria in binary mixtures of hydrocarbons with a thermally robust perarylphosphonium-based ionic liquid. RSC Advances, 2021, 11, 31328-31338.	1.7	2
26	The Squeeze Flow of Yield Stress Fluids. AIP Conference Proceedings, 2008, , .	0.3	0