
## Habib Benbouhenni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1558615/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction<br>Generator-Based Variable Speed Dual-Rotor Wind Turbines. Energies, 2021, 14, 4437.                                                 | 3.1 | 42        |
| 2  | Terminal Synergetic Control for Direct Active and Reactive Powers in Asynchronous Generator-Based<br>Dual-Rotor Wind Power Systems. Electronics (Switzerland), 2021, 10, 1880.                                                   | 3.1 | 36        |
| 3  | Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine. Mathematics, 2021, 9, 2297.                                         | 2.2 | 32        |
| 4  | Third-Order Sliding Mode Applied to the Direct Field-Oriented Control of the Asynchronous<br>Generator for Variable-Speed Contra-Rotating Wind Turbine Generation Systems. Energies, 2021, 14,<br>5877.                          | 3.1 | 31        |
| 5  | New direct power synergetic-SMC technique based PWM for DFIG integrated to a variable speed dual-rotor wind power. Automatika, 2022, 63, 718-731.                                                                                | 2.0 | 28        |
| 6  | Fractional-order proportional-integral superÂtwisting sliding mode controller for wind energy<br>conversion system equipped with doubly fed induction generator. Journal of Power Electronics, 2022,<br>22, 1357-1373.           | 1.5 | 25        |
| 7  | Application of Fractional-Order PI Controllers and Neuro-Fuzzy PWM Technique to Multi-Rotor Wind<br>Turbine Systems. Electronics (Switzerland), 2022, 11, 1340.                                                                  | 3.1 | 21        |
| 8  | Advanced Direct Vector Control Method for Optimizing the Operation of a Double-Powered Induction Generator-Based Dual-Rotor Wind Turbine System. Mathematics, 2021, 9, 2403.                                                     | 2.2 | 19        |
| 9  | Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor<br>Wind Turbine System Using PWM Strategy. Energies, 2022, 15, 3689.                                                             | 3.1 | 18        |
| 10 | Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based<br>Multi-Rotor Wind Turbine System. Sustainability, 2022, 14, 5014.                                                            | 3.2 | 17        |
| 11 | DPC Based on ANFIS Super-Twisting Sliding Mode Algorithm of a Doubly-Fed Induction Generator for Wind Energy System. Journal Europeen Des Systemes Automatises, 2020, 53, 69-80.                                                 | 0.4 | 15        |
| 12 | A comparison study between fuzzy PWM and SVM inverter in NSMC control of stator active and reactive power control of a DFIG based wind turbine systems. International Journal of Applied Power Engineering (IJAPE), 2019, 8, 78. | 0.2 | 14        |
| 13 | Power Control of DFIG in WECS Using DPC and NDPC-NPWM Methods. Mathematical Modelling of Engineering Problems, 2020, 7, 223-236.                                                                                                 | 0.5 | 14        |
| 14 | Using Four-Level NSVM Technique to Improve DVC Control of a DFIG Based Wind Turbine Systems.<br>Periodica Polytechnica Electrical Engineering and Computer Science, 2019, 63, 144-150.                                           | 1.0 | 11        |
| 15 | Comparison study between SVPWM and FSVPWM strategy in fuzzy second order sliding mode control of a DFIG-based wind turbine. Carpathian Journal of Electronic and Computer Engineering, 2019, 12, 1-10.                           | 0.9 | 11        |
| 16 | Two-level DTC based on ANN controller of DFIG using 7-level hysteresis command to reduce flux ripple comparing with traditional command. , 2018, , .                                                                             |     | 10        |
| 17 | ANFIS-sliding mode control of a DFIG supplied by a two-level SVPWM technique for wind energy conversion system. International Journal of Applied Power Engineering (IJAPE), 2020, 9, 36.                                         | 0.2 | 10        |
| 18 | A comparative study between four-level NSVM and three-level NSVM technique for a DFIG-based WECSs controlled by indirect vector control. Carpathian Journal of Electronic and Computer Engineering, 2018, 11, 13-19.             | 0.9 | 9         |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Feedforward Neural Network-DTC of Multi-phase Permanent Magnet Synchronous Motor Using<br>Five-Phase Neural Space Vector Pulse Width Modulation Strategy. Journal Europeen Des Systemes<br>Automatises, 2021, 54, 345-354.           | 0.4 | 7         |
| 20 | Application of DPC and DPC-GA to the dual-rotor wind turbine system with DFIG. IAES International Journal of Robotics and Automation, 2021, 10, 224.                                                                                 | 0.3 | 7         |
| 21 | Twelve Sectors DPC Control Based on Neural Hysteresis Comparators of the DFIG Integrated to Wind Power. Tecnica Italiana, 2020, 64, 347-353.                                                                                         | 0.2 | 7         |
| 22 | Seven-level NPC Inverter-based Neuronal Direct Torque Control of the PMSM Drives with Regulation<br>Speed Using Neural PI Controller. International Journal of Intelligent Information Systems, 2019, 8, 85.                         | 0.4 | 7         |
| 23 | Higher Control Scheme Using Neural Second Order Sliding Mode and ANFIS-SVM strategy for a<br>DFIG-Based Wind Turbine. International Journal of Advances in Telecommunications, Electrotechnics,<br>Signals and Systems, 2019, 8, 17. | 0.2 | 6         |
| 24 | Direct Torque Fuzzy Controlled Drive for Multi-phase IPMSM Based on SVM Technique. Journal<br>Europeen Des Systemes Automatises, 2020, 53, 259-266.                                                                                  | 0.4 | 5         |
| 25 | FIVE-LEVEL DTC WITH 12 SECTORS OF INDUCTION MOTOR DRIVE USING NEURAL NETWORKS CONTROLLER FOR LOW TORQUE RIPPLE. Acta Electrotechnica Et Informatica, 2018, 18, 61-66.                                                                | 0.3 | 5         |
| 26 | A novel matlab/simulink model of DFIG drive using NSMC method with NSVM strategy. International<br>Journal of Applied Power Engineering (IJAPE), 2019, 8, 221.                                                                       | 0.2 | 5         |
| 27 | Direct vector command based on three-level NSVM of a doubly fed induction generator for wind energy conversion. , 2018, , .                                                                                                          |     | 4         |
| 28 | Intelligent SVM technique of a multi-level inverter for a DFIG-based wind turbine system. International<br>Journal of Digital Signals and Smart Systems, 2019, 3, 4.                                                                 | 0.2 | 4         |
| 29 | A comparative study between NSMC and NSOSMC strategy for a DFIG integrated into wind energy system. Carpathian Journal of Electronic and Computer Engineering, 2019, 12, 1-8.                                                        | 0.9 | 4         |
| 30 | IMPROVED SWITCHING SELECTION FOR DTC OF INDUCTION MOTOR DRIVE USING ARTIFICIAL NEURAL NETWORKS. Acta Electrotechnica Et Informatica, 2018, 18, 26-34.                                                                                | 0.3 | 3         |
| 31 | A Novel Switching Tables of Twelve Sectors DTC for Induction Machine Drive Using Artificial Neural<br>Networks. Automation Control and Intelligent Systems, 2019, 7, 1.                                                              | 0.2 | 3         |
| 32 | STATOR ACTIVE AND REACTIVE POWER RIPPLES MINIMIZATION FOR DVC CONTROL OF DFIG BY USING FIVE-LEVEL NEURAL SPACE VECTOR MODULATION. Acta Electrotechnica Et Informatica, 2019, 19, 16-23.                                              | 0.3 | 3         |
| 33 | FPWM TECHNIQUE BASED CONVERTER FOR IM DRIVES. Acta Electrotechnica Et Informatica, 2019, 19, 32-41.                                                                                                                                  | 0.3 | 2         |
| 34 | Speed Regulator and Hysteresis Based on Artificial Intelligence Techniques of Three-Level DTC for<br>Induction Motor. Acta Electrotechnica Et Informatica, 2017, 17, 50-56.                                                          | 0.3 | 1         |
| 35 | 24 Sectors DTC Control with Fuzzy Hysteresis Comparators for DFIM Fed by the Three-level NPC Inverter. WSEAS Transactions on Electronics, 2022, 12, 141-154.                                                                         | 0.5 | 0         |