Kenta Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1558546/publications.pdf

Version: 2024-02-01

687363 839539 26 384 13 18 h-index citations g-index papers 29 29 29 225 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	A New Approach to Stereoselective Electrocatalytic Semihydrogenation of Alkynes to <i>Z</i> -Alkenes using a Proton-Exchange Membrane Reactor. ACS Sustainable Chemistry and Engineering, 2019, 7, 11050-11055.	6.7	45
2	Green-light-driven thioxanthylium-based organophotoredox catalysts: Organophotoredox promoted radical cation Diels-Alder reaction. Tetrahedron Letters, 2018, 59, 3361-3364.	1.4	28
3	Integrated Flow Synthesis of α-Amino Acids by <i>In Situ</i> Generation of Aldimines and Subsequent Electrochemical Carboxylation. Journal of Organic Chemistry, 2021, 86, 15953-15960.	3.2	27
4	Organophotoredox-Catalyzed Intermolecular Oxa-[4+2] Cycloaddition Reactions. Journal of Organic Chemistry, 2019, 84, 10669-10678.	3.2	26
5	Electrocatalytic asymmetric hydrogenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated acids in a PEM reactor with cinchona-modified palladium catalysts. Electrochemistry Communications, 2020, 115, 106734.	4.7	22
6	Redox Potential Controlled Selective Oxidation of Styrenes for Regio- and Stereoselective Crossed Intermolecular [2 + 2] Cycloaddition <i>via</i> Organophotoredox Catalysis. Organic Letters, 2020, 22, 5207-5211.	4.6	21
7	Highly regioselective synthesis of 2,3-disubstituted 2 H -1-benzopyrans: BrÃ,nsted acid catalyzed [4+2] cycloaddition reaction with a variety of arylalkynes via ortho -quinone methides. Tetrahedron, 2017, 73, 6456-6464.	1.9	20
8	Visible-light-induced $[4+2]$ cycloaddition of pentafulvenes by organic photoredox catalysis. Organic and Biomolecular Chemistry, 2020, 18, 8074-8078.	2.8	20
9	A novel synthesis of polysubstituted chromenes from various salicylaldehydes and alkynes under mild conditions. Tetrahedron Letters, 2016, 57, 2448-2450.	1.4	19
10	Regioselective one-pot synthesis of 2,3-diaryl-2H-1-benzopyrans via $Br\tilde{A}_{i}$, nsted acid-catalyzed [4+2] cycloaddition of salicylaldehydes with diarylacetylenes. Tetrahedron Letters, 2016, 57, 5914-5918.	1.4	19
11	Highly Selective and Efficient Electrocatalytic Semihydrogenation of Diphenylacetylene in a PEM Reactor with Pt–Pd Alloy Cathode Catalysts. Journal of the Electrochemical Society, 2020, 167, 155506.	2.9	17
12	Access to Electron-Deficient 2,2-Disubstituted Chromanes: A Highly Regioselective One-Pot Synthesis via an Inverse-Electron-Demand $[4+2]$ Cycloaddition of <i>ortho</i> -Quinone Methides. Journal of Organic Chemistry, 2019, 84, 13858-13870.	3.2	15
13	A Flow Microreactor Approach to a Highly Efficient Diels–Alder Reaction with an Electrogenerated o-Quinone. Synlett, 2019, 30, 1194-1198.	1.8	15
14	Temperature-controlled divergent synthesis of 4-alkoxy- or 4-alkenyl-chromanes via inverse electron-demand cycloaddition with in situ generated ortho-quinone methides. Tetrahedron Letters, 2018, 59, 1841-1845.	1.4	14
15	Highly Selective One-Pot Synthesis of Polysubstituted Isoflavanes using Styryl Ethers and Electron-Withdrawing ortho-Quinone Methides Generated In Situ. Synlett, 2019, 30, 189-192.	1.8	11
16	The Ring-contraction Reaction of Electron-deficient 3-Silylchromene to 2-Benzylbenzofuran under Mildly Basic Conditions. Chemistry Letters, 2018, 47, 440-443.	1.3	10
17	Friedel–Crafts approach to the one-pot synthesis of methoxy-substituted thioxanthylium salts. Beilstein Journal of Organic Chemistry, 2019, 15, 2105-2112.	2.2	9
18	Development of Regioselective Inverse-Electron-Demand [4+2] Cycloaddition with Electron-Rich Arylalkynes for Access to Multi-Substituted Condensed Oxapolycyclic Compounds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 1341-1351.	0.1	8

#	Article	IF	CITATION
19	Dual In Situ Generation of Aliphatic Vinyl Ethers and Electron-Deficient ortho-Quinone Methides for Inverse-Electron-Demand [4+2] Cycloaddition: A Selective One-Pot Synthesis of 3-Alkylchromanes. Synlett, 2020, 31, 1197-1200.	1.8	7
20	A Direct Synthesis of 2,2-Disubstituted 3-Silylchromenes by [4+2] Cycloaddition of in situ Generated o-Quinonemethides with Electron-Rich Alkynes. Heterocycles, 2017, 95, 474.	0.7	7
21	CsF-Promoted Desilylation and Ring-Contraction Reaction of Electron-Deficient 3-Silyl-2H-chromenes to 2-Benzylbenzofurans. Heterocycles, 2019, 99, 145.	0.7	7
22	Moderately Oxidizing Thioxanthylium Organophotoredox Catalysts for Radical-Cation Diels–Alder Reactions. Journal of Organic Chemistry, 2022, 87, 3319-3328.	3.2	6
23	Design and Synthesis of Strongly Oxidizing Thioxanthylium Organic Photosensitizer for Green-light-driven Photoredox Catalysis. Journal of the Japan Society of Colour Material, 2020, 93, 49-53.	0.1	4
24	Flow Electrosynthesis and Molecular Weight Control of Polyphenylene Deriving from 1,4-Bis(trimethylsilyl)benzene: Effect of a Silyl Substituent on the Coupling Position. Electrochemistry, 2020, 88, 336-339.	1.4	4
25	A new cycloaddition profile for <i>ortho</i> -quinone methides: photoredox-catalyzed [6+4] cycloadditions for synthesis of benzo[<i>b</i>)cyclopenta[<i>e</i>)oxepines. Chemical Communications, 2022, 58, 2476-2479.	4.1	3
26	Electrochemical Synthesis of Porous Polypyrrole Materials Using Polyacrylonitrile Monolith Template. Kagaku Kogaku Ronbunshu, 2020, 46, 129-133.	0.3	0