Kevin P Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1558538/publications.pdf

Version: 2024-02-01

136740 138251 3,969 97 32 58 citations h-index g-index papers 107 107 107 3386 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic Selection in Plant Breeding. Advances in Agronomy, 2011, 110, 77-123.	2.4	395
2	A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics, 2006, 7, 206.	1,2	305
3	HOSTVARIATION FORINTERACTIONS WITHBENEFICIALPLANT-ASSOCIATEDMICROBES. Annual Review of Phytopathology, 1999, 37, 473-491.	3.5	195
4	Association mapping of spot blotch resistance in wild barley. Molecular Breeding, 2010, 26, 243-256.	1.0	151
5	Adding Genetically Distant Individuals to Training Populations Reduces Genomic Prediction Accuracy in Barley. Crop Science, 2015, 55, 2657-2667.	0.8	150
6	Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Molecular Breeding, 2011, 27, 439-454.	1.0	142
7	Assessing Genomic Selection Prediction Accuracy in a Dynamic Barley Breeding Population. Plant Genome, 2015, 8, eplantgenome2014.05.0020.	1.6	130
8	Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theoretical and Applied Genetics, 1999, 99, 561-569.	1.8	129
9	Population Structure and Linkage Disequilibrium in U.S. Barley Germplasm: Implications for Association Mapping. Crop Science, 2010, 50, 556-566.	0.8	106
10	PopVar: A Genomeâ€Wide Procedure for Predicting Genetic Variance and Correlated Response in Biparental Breeding Populations. Crop Science, 2015, 55, 2068-2077.	0.8	99
11	Quantitative Trait Loci for Multiple Disease Resistance in Wild Barley. Crop Science, 2005, 45, 2563-2572.	0.8	85
12	The Role of Deleterious Substitutions in Crop Genomes. Molecular Biology and Evolution, 2016, 33, 2307-2317.	3.5	83
13	Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics, 2010, 11, 707.	1.2	81
14	Quantitative Trait Loci for Fusarium Head Blight Resistance in Barley Detected in a Twoâ€Rowed by Sixâ€Rowed Population. Crop Science, 2003, 43, 307-318.	0.8	78
15	Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theoretical and Applied Genetics, 2012, 124, 111-124.	1.8	77
16	Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley. Genetics, 2016, 203, 1453-1467.	1.2	73
17	A genome-wide association study of malting quality across eight U.S. barley breeding programs. Theoretical and Applied Genetics, 2015, 128, 705-721.	1.8	67
18	Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome, 2007, 50, 714-723.	0.9	66

#	Article	IF	Citations
19	Transpiration increases under highâ€ŧemperature stress: Potential mechanisms, tradeâ€offs and prospects for crop resilience in a warming world. Plant, Cell and Environment, 2021, 44, 2102-2116.	2.8	65
20	Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance. BMC Genomics, 2016, 17, 387.	1.2	64
21	Association Mapping of Agronomic QTLs in U.S. Spring Barley Breeding Germplasm. Plant Genome, 2014, 7, plantgenome2013.11.0037.	1.6	63
22	The Genetics of Winterhardiness in Barley: Perspectives from Genomeâ€Wide Association Mapping. Plant Genome, 2011, 4, .	1.6	62
23	Accelerating <i>Silphium</i> Domestication: An Opportunity to Develop New Crop Ideotypes and Breeding Strategies Informed by Multiple Disciplines. Crop Science, 2017, 57, 1274-1284.	0.8	61
24	Validation of Quantitative Trait Loci for Multiple Disease Resistance in Barley Using Advanced Backcross Lines Developed with a Wild Barley. Crop Science, 2006, 46, 1179-1186.	0.8	47
25	Evaluating Methods of Updating Training Data in Long-Term Genomewide Selection. G3: Genes, Genomes, Genetics, 2017, 7, 1499-1510.	0.8	44
26	Quantitative Trait Loci for Fusarium Head Blight Resistance in Barley Detected in a Two-Rowed by Six-Rowed Population. Crop Science, 2003, 43, 307.	0.8	44
27	Genomic Selection Performs Similarly to Phenotypic Selection in Barley. Crop Science, 2016, 56, 2871-2881.	0.8	39
28	Genetic Relationship between Kernel Discoloration and Grain Protein Concentration in Barley. Crop Science, 2003, 43, 1671-1679.	0.8	38
29	Two Genomic Regions Contribute Disproportionately to Geographic Differentiation in Wild Barley. G3: Genes, Genomes, Genetics, 2014, 4, 1193-1203.	0.8	38
30	Mapping Agronomic Traits in a Wild Barley Advanced Backcross–Nested Association Mapping Population. Crop Science, 2017, 57, 1199-1210.	0.8	38
31	QTL Mapping of Fusarium Head Blight and Correlated Agromorphological Traits in an Elite Barley Cultivar Rasmusson. Frontiers in Plant Science, 2018, 9, 1260.	1.7	37
32	Effect of Advanced Cycle Breeding on Genetic Diversity in Barley Breeding Germplasm. Crop Science, 2008, 48, 1027-1036.	0.8	36
33	Analysis of the chromosome 2(2H) region of barley associated with the correlated traits Fusarium head blight resistance and heading date. Theoretical and Applied Genetics, 2007, 115, 561-570.	1.8	35
34	The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype Resource. Plant Genome, 2012, 5, 81-91.	1.6	35
35	Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and \hat{l}^2 -glucan in US barley breeding germplasm. Molecular Breeding, 2014, 34, 1229-1243.	1.0	35
36	Evaluation and retrospective optimization of genomic selection for yield and disease resistance in spring barley. Molecular Breeding, 2018, 38, 1.	1.0	34

#	Article	IF	CITATIONS
37	Multi-trait Improvement by Predicting Genetic Correlations in Breeding Crosses. G3: Genes, Genomes, Genetics, 2019, 9, 3153-3165.	0.8	34
38	Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement. BMC Genomics, 2010, 11, 653.	1.2	29
39	Validation of quantitative trait loci for Fusarium head blight and kernel discoloration in barley. Molecular Breeding, 2004, 14, 91-104.	1.0	27
40	Host Genetic Effect on Deoxynivalenol Accumulation in Fusarium Head Blight of Barley. Phytopathology, 2004, 94, 766-771.	1.1	27
41	Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay. Molecular Breeding, 2013, 31, 631-654.	1.0	25
42	Predicting genetic variance in bi-parental breeding populations is more accurate when explicitly modeling the segregation of informative genomewide markers. Molecular Breeding, 2015, 35, 1.	1.0	24
43	Development of a Multiparent Population for Genetic Mapping and Allele Discovery in Six-Row Barley. Genetics, 2019, 213, 595-613.	1.2	23
44	Registration of â€~Quest' Spring Malting Barley with Improved Resistance to Fusarium Head Blight. Journal of Plant Registrations, 2013, 7, 125-129.	0.4	23
45	Genome-Wide Association Study of Spot Form of Net Blotch Resistance in the Upper Midwest Barley Breeding Programs. Phytopathology, 2017, 107, 100-108.	1.1	22
46	Haplotype diversity and population structure in cultivated and wild barley evaluated for Fusarium head blight responses. Theoretical and Applied Genetics, 2013, 126, 619-636.	1.8	21
47	The Effects of Both Recent and Long-Term Selection and Genetic Drift Are Readily Evident in North American Barley Breeding Populations. G3: Genes, Genomes, Genetics, 2016, 6, 609-622.	0.8	21
48	Validating Genomewide Predictions of Genetic Variance in a Contemporary Breeding Program. Crop Science, 2019, 59, 1062-1072.	0.8	21
49	Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations. Theoretical and Applied Genetics, 2021, 134, 4043-4054.	1.8	20
50	Using near-isogenic barley lines to validate deoxynivalenol (DON) QTL previously identified through association analysis. Theoretical and Applied Genetics, 2014, 127, 633-645.	1.8	19
51	Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit. Frontiers in Plant Science, 2020, 11, 585927.	1.7	19
52	Exploiting selective genotyping to study genetic diversity of resistance to Fusarium head blight in barley. Theoretical and Applied Genetics, 2004, 109, 1160-1168.	1.8	18
53	Variation in Kernel Hardness and Associated Traits in U.S. Barley Breeding Lines. Cereal Chemistry, 2010, 87, 461-466.	1.1	17
54	Translating insights from the seed metabolome into improved prediction for lipid-composition traits in oat (<i>Avena sativa</i> L.). Genetics, 2021, 217, .	1.2	17

#	Article	lF	CITATIONS
55	Effect of Advanced Cycle Breeding on Genetic Gain and Phenotypic Diversity in Barley Breeding Germplasm. Crop Science, 2009, 49, 1751-1761.	0.8	15
56	Identification of quantitative trait loci for net form net blotch resistance in contemporary barley breeding germplasm from the USA using genome-wide association mapping. Theoretical and Applied Genetics, 2020, 133, 1019-1037.	1.8	15
57	Registration of â€~Rasmusson' Barley. Journal of Plant Registrations, 2010, 4, 167-170.	0.4	14
58	Genome-wide association for \hat{l}^2 -glucan content, population structure, and linkage disequilibrium in elite oat germplasm adapted to subtropical environments. Molecular Breeding, 2020, 40, 1.	1.0	14
59	Improving Genomic Prediction for Seed Quality Traits in Oat (Avena sativa L.) Using Trait-Specific Relationship Matrices. Frontiers in Genetics, 2021, 12, 643733.	1.1	14
60	Genetic loci mediating circadian clock output plasticity and crop productivity under barley domestication. New Phytologist, 2021, 230, 1787-1801.	3.5	14
61	Quantitative Trait Loci Associated with the Tocochromanol (Vitamin E) Pathway in Barley. PLoS ONE, 2015, 10, e0133767.	1.1	14
62	Quantitative trait loci conferring resistance to Fusarium head blight in barley respond differentially to Fusarium graminearum infection. Functional and Integrative Genomics, 2011, 11, 95-102.	1.4	12
63	TCAP FACâ€WIN6 Elite Barley GWAS Panel QTL. I. Barley Stripe Rust Resistance QTL in Facultative and Winter Sixâ€Rowed Malt Barley Breeding Programs Identified via GWAS. Crop Science, 2018, 58, 103-119.	0.8	12
64	The Fate of Deleterious Variants in a Barley Genomic Prediction Population. Genetics, 2019, 213, 1531-1544.	1.2	12
65	Comparative Analyses Identify the Contributions of Exotic Donors to Disease Resistance in a Barley Experimental Population. G3: Genes, Genomes, Genetics, 2013, 3, 1945-1953.	0.8	11
66	Registration of the S2MET Barley Mapping Population for Multiâ€Environment Genomewide Selection. Journal of Plant Registrations, 2019, 13, 270-280.	0.4	11
67	Multiscale characterization and micromechanical modeling of crop stem materials. Biomechanics and Modeling in Mechanobiology, 2021, 20, 69-91.	1.4	11
68	Genotype by environment interactions (GEIs) for barley grain yield under salt stress condition. Journal of Crop Science and Biotechnology, 2017, 20, 193-204.	0.7	10
69	Variation in Lignin, Cell Wall-Bound <i>p</i> -Coumaric, and Ferulic Acid in the Nodes and Internodes of Cereals and Their Impact on Lodging. Journal of Agricultural and Food Chemistry, 2020, 68, 12569-12576.	2.4	10
70	Assessment of Winter Barley in Minnesota: Relationships among Cultivar, Fall Seeding Date, Winter Survival, and Grain Yield. Crop, Forage and Turfgrass Management, 2019, 5, 190055.	0.2	9
71	Silflower seed and biomass responses to plant density and nitrogenÂfertilization., 2020, 3, e20118.		9

Selection for seed size has uneven effects on specialized metabolite abundance in oat (<i>Avena) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50

#	Article	IF	Citations
73	Comparison of ELISA for Fusarium, Visual Screening, and Deoxynivalenol Analysis of Fusarium Head Blight for Barley Field Nurseries. Crop Science, 2008, 48, 1389-1398.	0.8	8
74	Mapping crown rust resistance at multiple time points in elite oat germplasm. Plant Genome, 2020, 13, e20007.	1.6	8
75	Generalizable approaches for genomic prediction of metabolites in plants. Plant Genome, 2022, 15, e20205.	1.6	8
76	Natural Genetic Variation Underlying Tiller Development in Barley (<i>Hordeum vulgare</i> L). G3: Genes, Genomes, Genetics, 2020, 10, 1197-1212.	0.8	7
77	Optimizing the choice of test locations for multitrait genotypic evaluation. Crop Science, 2022, 62, 192-202.	0.8	7
78	Measurements of lethal and nonlethal inbreeding depression inform the de novo domestication of Silphium integrifolium. American Journal of Botany, 2021, 108, 980-992.	0.8	6
79	Inexpensive, High Throughput Microplate Format for Plant Nucleic Acid Extraction: Suitable for Multiplex Southern Analyses of Transgenes. Crop Science, 2005, 45, 1985-1989.	0.8	5
80	Genomics-Based Barley Breeding. Compendium of Plant Genomes, 2018, , 287-315.	0.3	5
81	Quantifying cereal crop movement through hemispherical video analysis of agricultural plots. Plant Methods, 2019, 15, 55.	1.9	5
82	Cereal Stem Stress: In Situ Biomechanical Characterization of Stem Elasticity. Applied Sciences (Switzerland), 2020, 10, 7965.	1.3	5
83	Using environmental similarities to design training sets for genomewide selection. Crop Science, 2021, 61, 396-409.	0.8	5
84	Genetic dissection of a pericentromeric region of barley chromosome 6H associated with Fusarium head blight resistance, grain protein content and agronomic traits. Theoretical and Applied Genetics, 2021, 134, 3963-3981.	1.8	5
85	Genetic characterization of agronomic traits and grain threshability for organic naked barley in the northern United States. Crop Science, 2022, 62, 690-703.	0.8	5
86	Cold Conditioned: Discovery of Novel Alleles for Low-Temperature Tolerance in the Vavilov Barley Collection. Frontiers in Plant Science, 2021, 12, 800284.	1.7	5
87	TCAP FACâ€WIN6 Elite Barley GWAS Panel QTL. II. Malting Quality QTL in Elite North American Facultative and Winter Sixâ€Rowed Barley Identified via GWAS. Crop Science, 2018, 58, 120-132.	0.8	4
88	Mapping QTLs for Grain Protein Concentration and Agronomic Traits under Different Nitrogen Levels in Barley. Crop Science, 2019, 59, 68-83.	0.8	4
89	Genomeâ€wide association mapping for kernel shape and its association with βâ€glucan content in oats. Crop Science, 2021, 61, 3986-3999.	0.8	4
90	Development of first linkage map for Silphium integrifolium (Asteraceae) enables identification of sporophytic self-incompatibility locus. Heredity, 2022, 128, 304-312.	1.2	4

#	Article	lF	CITATIONS
91	Mapping malting quality and yield characteristics in a north American two-rowed malting barley $ ilde{A}-$ wild barley advanced backcross population. Molecular Breeding, 2019, 39, 1.	1.0	3
92	Assessing phenotypic diversity in silflower (<i>Silphium integrifolium</i> Michx.) to identify traits of interest for domestication selection. Crop Science, 2022, 62, 1443-1460.	0.8	3
93	The evolutionary patterns of barley pericentromeric chromosome regions, as shaped by linkage disequilibrium and domestication. Plant Journal, 0, , .	2.8	3
94	Oat Crown Rust Disease Severity Estimated at Many Time Points Using Multispectral Aerial Photos. Phytopathology, 2022, 112, 682-690.	1.1	2
95	Reverse introduction of two―and sixâ€rowed barley lines from the United States into Egypt. Crop Science, 2020, 60, 812-829.	0.8	1
96	Capturing High Resolution Plant Movement in the Field. Integrative and Comparative Biology, 0, , .	0.9	1
97	Association between xylem vasculature size and freezing survival in winter barley. Journal of Agronomy and Crop Science, 0, , .	1.7	0