
Zhiyong Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1558402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A predicted stem-loop in coat protein-coding sequencing of tobacco vein banding mosaic virus is required for efficient replication. Phytopathology, 2021, , .	1.1	1
2	Residues R ¹⁹² and K ²²⁵ in RNA-Binding Pocket of Tobacco Vein Banding Mosaic Virus CP Control Virus Cell-to-Cell Movement and Replication. Molecular Plant-Microbe Interactions, 2021, 34, 658-668.	1.4	6
3	Endogenous Viral Elements Are Widespread in Arthropod Genomes and Commonly Give Rise to PIWI-Interacting RNAs. Journal of Virology, 2019, 93, .	1.5	81
4	Accumulation of 24 nucleotide transgeneâ€derived siRNAs is associated with crinivirus immunity in transgenic plants. Molecular Plant Pathology, 2018, 19, 2236-2247.	2.0	10
5	Downâ€regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful <i>Soybean mosaic virus</i> infection in soybean. Molecular Plant Pathology, 2018, 19, 948-960.	2.0	47
6	The <i>Torradovirus</i> â€specific RNA2â€ORF1 protein is necessary for plant systemic infection. Molecular Plant Pathology, 2018, 19, 1319-1331.	2.0	8
7	A Distinct, Non-Virion Plant Virus Movement Protein Encoded by a Crinivirus Essential for Systemic Infection. MBio, 2018, 9, .	1.8	17
8	Two Crinivirus-Conserved Small Proteins, P5 and P9, Are Indispensable for Efficient Lettuce infectious yellows virus Infectivity in Plants. Viruses, 2018, 10, 459.	1.5	6
9	Insect-specific viruses: from discovery to potential translational applications. Current Opinion in Virology, 2018, 33, 33-41.	2.6	73
10	RNA Interference Mechanisms and Applications in Plant Pathology. Annual Review of Phytopathology, 2018, 56, 581-610.	3.5	170
11	Enhancement of Recombinant Protein Production in Transgenic Nicotiana benthamiana Plant Cell Suspension Cultures with Co-Cultivation of Agrobacterium Containing Silencing Suppressors. International Journal of Molecular Sciences, 2018, 19, 1561.	1.8	8
12	Efficient Protein Expression and Virus-Induced Gene Silencing in Plants Using a Crinivirus-Derived Vector. Viruses, 2018, 10, 216.	1.5	10
13	Construction of Agrobacterium tumefaciens -mediated tomato black ring virus infectious cDNA clones. Virus Research, 2017, 230, 59-62.	1.1	15
14	The Impact of "Coat Protein-Mediated Virus Resistance―in Applied Plant Pathology and Basic Research. Phytopathology, 2017, 107, 624-634.	1.1	47
15	Inspirations on Virus Replication and Cell-to-Cell Movement from Studies Examining the Cytopathology Induced by Lettuce infectious yellows virus in Plant Cells. Frontiers in Plant Science, 2017, 8, 1672.	1.7	11
16	Deep Sequencing Analysis of RNAs from Citrus Plants Grown in a Citrus Sudden Death-Affected Area Reveals Diverse Known and Putative Novel Viruses. Viruses, 2017, 9, 92.	1.5	53
17	A Semipersistent Plant Virus Differentially Manipulates Feeding Behaviors of Different Sexes and Biotypes of Its Whitefly Vector. Viruses, 2017, 9, 4.	1.5	41
18	Oral delivery of double-stranded RNAs induces mortality in nymphs and adults of the Asian citrus psyllid, Diaphorina citri. PLoS ONE, 2017, 12, e0171847.	1.1	59

#	Article	IF	CITATIONS
19	Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana. Frontiers in Plant Science, 2016, 7, 743.	1.7	33
20	Complete Genome Sequence of a Putative Densovirus of the Asian Citrus Psyllid, <i>Diaphorina citri</i> . Genome Announcements, 2016, 4, .	0.8	16
21	Direct evidence for the semipersistent transmission of Cucurbit chlorotic yellows virus by a whitefly vector. Scientific Reports, 2016, 6, 36604.	1.6	30
22	Complete Genome Sequence of <i>Diaphorina citri-associated C virus</i> , a Novel Putative RNA Virus of the Asian Citrus Psyllid, <i>Diaphorina citri</i> . Genome Announcements, 2016, 4, .	0.8	10
23	Sequence polymorphism in an insect RNA virus field population: A snapshot from a single point in space and time reveals stochastic differences among and within individual hosts. Virology, 2016, 498, 209-217.	1.1	1
24	Complete Genome Sequence of the Largest Known Flavi-Like Virus, <i>Diaphorina citri flavi-like virus</i> , a Novel Virus of the Asian Citrus Psyllid, <i>Diaphorina citri</i> . Genome Announcements, 2016, 4, .	0.8	11
25	Plant Virus-Vector Interactions: More Than Just for Virus Transmission. , 2016, , 217-240.		31
26	Molecular and biological characterization of highly infectious transcripts from full-length cDNA clones of broad bean wilt virus 1. Virus Research, 2016, 217, 71-75.	1.1	4
27	Diverse Array of New Viral Sequences Identified in Worldwide Populations of the Asian Citrus Psyllid (Diaphorina citri) Using Viral Metagenomics. Journal of Virology, 2016, 90, 2434-2445.	1.5	55
28	Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5) Tj ETQq0 2117-2123.	0 0 rgBT /0 0.9	Dverlock 10 Tr 25
29	Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered, 2015, 6, 8-19.	1.4	66
30	Detection and absolute quantitation of Tomato torrado virus (ToTV) by real time RT-PCR. Journal of Virological Methods, 2015, 221, 90-94.	1.0	8
31	Insect vector-mediated transmission of plant viruses. Virology, 2015, 479-480, 278-289.	1.1	413
32	Identification of Novel and Conserved microRNAs in Homalodisca vitripennis, the Glassy-Winged Sharpshooter by Expression Profiling. PLoS ONE, 2015, 10, e0139771.	1.1	4
33	Virus-Resistant Crops and Trees. , 2014, , 155-168.		0
34	<i>Agrobacterium tumefaciens</i> mediated transient expression of plant cell wallâ€degrading enzymes in detached sunflower leaves. Biotechnology Progress, 2014, 30, 905-915.	1.3	24
35	Genetic Variation and Possible Mechanisms Driving the Evolution of Worldwide <i>Fig mosaic virus</i> Isolates. Phytopathology, 2014, 104, 108-114.	1.1	33
36	Genetic Structure and Molecular Variability of Cucumber mosaic virus Isolates in the United States. PLoS ONE, 2014, 9, e96582.	1.1	49

#	Article	IF	CITATIONS
37	CHARACTERIZATION OF HOVI-MEH1, A MICROSOMAL EPOXIDE HYDROLASE FROM THE GLASSY-WINGED SHARPSHOOTERHomalodisca vitripennis. Archives of Insect Biochemistry and Physiology, 2013, 83, 171-179.	0.6	5
38	Small RNA populations for two unrelated viruses exhibit different biases in strand polarity and proximity to terminal sequences in the insect host Homalodisca vitripennis. Virology, 2013, 442, 12-19.	1.1	25
39	Use of Recombinant Tobacco Mosaic Virus To Achieve RNA Interference in Plants against the Citrus Mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PLoS ONE, 2013, 8, e73657.	1.1	41
40	RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV). PLoS ONE, 2013, 8, e66050.	1.1	68
41	Crinivirus replication and host interactions. Frontiers in Microbiology, 2013, 4, 99.	1.5	45
42	Sequencing and De Novo Assembly of the Transcriptome of the Glassy-Winged Sharpshooter (Homalodisca vitripennis). PLoS ONE, 2013, 8, e81681.	1.1	15
43	Bipartite and tripartite Cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticus endo-1,4-β-glucanase and other proteins in non-transgenic plants. BMC Biotechnology, 2012, 12, 66.	1.7	14
44	RNA interference is induced in the glassy winged sharpshooter <i>Homalodisca vitripennis</i> by actin dsRNA. Pest Management Science, 2012, 68, 995-1002.	1.7	25
45	Fig mosaic virus mRNAs show generation by cap-snatching. Virology, 2012, 426, 162-166.	1.1	27
46	A new satellite RNA is associated with natural infections of cucumber mosaic virus in succulent snap bean. Archives of Virology, 2012, 157, 375-377.	0.9	2
47	Oral Delivery of Double-Stranded RNAs and siRNAs Induces RNAi Effects in the Potato/Tomato Psyllid, Bactericerca cockerelli. PLoS ONE, 2011, 6, e27736.	1.1	100
48	Lettuce infectious yellows virus (LIYV) RNA 1-encoded P34 is an RNA-binding protein and exhibits perinuclear localization. Virology, 2010, 403, 67-77.	1.1	17
49	A Mutation in the <i>Lettuce Infectious Yellows Virus</i> Minor Coat Protein Disrupts Whitefly Transmission but Not <i>In Planta</i> Systemic Movement. Journal of Virology, 2010, 84, 12165-12173.	1.5	52
50	<i>Tomato Bushy Stunt Virus</i> Recombination Guided by Introduced MicroRNA Target Sequences. Journal of Virology, 2009, 83, 10472-10479.	1.5	3
51	cis preferential replication of Lettuce infectious yellows virus (LIYV) RNA 1: The initial step in the asynchronous replication of the LIYV genomic RNAs. Virology, 2009, 386, 217-223.	1.1	15
52	Lettuce infectious yellows virus-encoded P26 induces plasmalemma deposit cytopathology. Virology, 2009, 388, 212-220.	1.1	17
53	Agroinoculation of the Crinivirus, Lettuce infectious yellows virus, for systemic plant infection. Virology, 2009, 392, 131-136.	1.1	35
54	Bioreactor strategies for improving production yield and functionality of a recombinant human protein in transgenic tobacco cell cultures. Biotechnology and Bioengineering, 2009, 102, 508-520.	1.7	60

#	Article	IF	CITATIONS
55	Optimization of the bioprocessing conditions for scaleâ€up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system. Biotechnology Progress, 2009, 25, 722-734.	1.3	23
56	Partial Sequence and Survey Analysis Identify a Multipartite, Negative-Sense RNA Virus Associated with Fig Mosaic. Plant Disease, 2009, 93, 4-10.	0.7	47
57	Synergistic interaction between the Potyvirus, Turnip mosaic virus and the Crinivirus, Lettuce infectious yellows virus in plants and protoplasts. Virus Research, 2009, 144, 163-170.	1.1	32
58	Two Crinivirus-specific proteins of Lettuce infectious yellows virus (LIYV), P26 and P9, are self-interacting. Virus Research, 2009, 145, 293-299.	1.1	12
59	Complete nucleotide sequences and genome characterization of a novel double-stranded RNA virus infecting Rosa multiflora. Archives of Virology, 2008, 153, 455-462.	0.9	28
60	Rose spring dwarf-associated virus has RNA structural and gene-expression features like those of Barley yellow dwarf virus. Virology, 2008, 375, 354-360.	1.1	20
61	Identification and Partial Characterization of a New Luteovirus Associated with Rose Spring Dwarf Disease. Plant Disease, 2008, 92, 508-512.	0.7	20
62	Quantitative Analysis of Efficient Endogenous Gene Silencing in Nicotiana benthamiana Plants Using Tomato bushy stunt virus Vectors That Retain the Capsid Protein Gene. Molecular Plant-Microbe Interactions, 2007, 20, 609-618.	1.4	27
63	Highâ€Level Transient Production of a Heterologous Protein in Plants by Optimizing Induction of a Chemically Inducible Viral Amplicon Expression System. Biotechnology Progress, 2007, 23, 1277-1285.	1.3	22
64	Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses. Annual Review of Phytopathology, 2006, 44, 183-212.	3.5	385
65	Chimeric cDNA Sequences from Citrus tristeza virus Confer RNA Silencing-Mediated Resistance in Transgenic Nicotiana benthamiana Plants. Phytopathology, 2006, 96, 819-827.	1.1	20
66	A chemically inducible cucumber mosaic virus amplicon system for expression of heterologous proteins in plant tissues. Plant Biotechnology Journal, 2006, 4, 060607001144001-???.	4.1	44
67	Bemisia tabaci transmission of specific Lettuce infectious yellows virus genotypes derived from in vitro synthesized transcript-inoculated protoplasts. Virology, 2006, 352, 209-215.	1.1	20
68	Molecular Population Genetics of Cucumber Mosaic Virus in California: Evidence for Founder Effects and Reassortment. Journal of Virology, 2004, 78, 6666-6675.	1.5	83
69	Quantitative parameters determining whitefly (Bemisia tabaci) transmission of Lettuce infectious yellows virus and an engineered defective RNA. Journal of General Virology, 2004, 85, 2697-2707.	1.3	44
70	Sequence Analysis of DNA Fragments from the Genome of the Primary Endosymbiont of the Whitefly Bemisia tabaci. Current Microbiology, 2004, 48, 77-81.	1.0	23
71	Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15742-15747.	3.3	344
72	Phylogenetic Evidence for Two New Insect-Associated Chlamydia of the Family Simkaniaceae. Current Microbiology, 2003, 47, 46-50.	1.0	83

#	Article	IF	CITATIONS
73	Comparative cytopathology of Crinivirus infections in different plant hosts. Annals of Applied Biology, 2003, 143, 99-110.	1.3	29
74	Genetic diversity and biological variation among California isolates of Cucumber mosaic virus. Journal of General Virology, 2003, 84, 249-258.	1.3	73
75	De novo generation of Lettuce infectious yellows virus defective RNAs in protoplasts. Molecular Plant Pathology, 2002, 3, 321-327.	2.0	11
76	Green Fluorescent Protein Expression from Recombinant Lettuce Infectious Yellows Virus-Defective RNAs Originating from RNA 2. Virology, 2001, 289, 54-62.	1.1	16
77	Genetic Variation of Citrus Tristeza Virus Isolates from California and Spain: Evidence for Mixed Infections and Recombination. Journal of Virology, 2001, 75, 8054-8062.	1.5	204
78	Geographically distant isolates of the crinivirus Cucurbit yellow stunting disorder virus show very low genetic diversity in the coat protein gene. Journal of General Virology, 2001, 82, 929-933.	1.3	87
79	Population structure and genetic diversity within California Citrus tristeza virus (CTV) isolates. Virus Genes, 2000, 21, 139-145.	0.7	84
80	A Heterogeneous Population of Defective RNAs Is Associated with Lettuce infectious yellows virus. Virology, 2000, 271, 205-212.	1.1	34
81	Interaction between HSP70 Homolog and Filamentous Virions of the Beet Yellows Virus. Virology, 2000, 274, 232-239.	1.1	66
82	Asynchronous Accumulation of Lettuce Infectious Yellows Virus RNAs 1 and 2 and Identification of an RNA 1 trans Enhancer of RNA 2 Accumulation. Journal of Virology, 2000, 74, 5762-5768.	1.5	59
83	Geographic Distribution and Molecular Variation of Isolates of Three Whitefly-Borne Closteroviruses of Cucurbits: Lettuce Infectious Yellows Virus, Cucurbit Yellow Stunting Disorder Virus, and Beet Pseudo-Yellows Virus. Phytopathology, 1999, 89, 707-711.	1.1	78
84	Systemic Insecticides and Plant Age Affect Beet Curly Top Virus Transmission to Selected Host Plants. Plant Disease, 1999, 83, 351-355.	0.7	27
85	BIOLOGY AND MOLECULAR BIOLOGY OF VIRUSES IN THE GENUSTENUIVIRUS. Annual Review of Phytopathology, 1998, 36, 139-163.	3.5	277
86	A Small RNA Resembling the Beet Western Yellows Luteovirus ST9-Associated RNA Is a Component of the California Carrot Motley Dwarf Complex. Phytopathology, 1998, 88, 164-170.	1.1	32
87	The Satellite RNA of Barley Yellow Dwarf Virus-RPV Is Supported by Beet Western Yellows Virus in Dicotyledonous Protoplasts and Plants. Virology, 1997, 231, 182-191.	1.1	19
88	In VitroTranscripts from Cloned cDNAs of the Lettuce Infectious Yellows Closterovirus Bipartite Genomic RNAs Are Competent for Replication inNicotiana benthamianaProtoplasts. Virology, 1996, 222, 169-175.	1.1	60
89	Maize stripe tenuivirus RNA2 transcripts in plant and insect hosts and analysis of pvc2, a protein similar to the Phlebovirus virion membrane glycoproteins. Virus Genes, 1996, 12, 239-47.	0.7	28
90	Genome Structure and Phylogenetic Analysis of Lettuce Infectious Yellows Virus, a Whitefly-Transmitted, Bipartite Closterovirus. Virology, 1995, 208, 99-110.	1.1	145

#	Article	IF	CITATIONS
91	Beet Western Yellows Luteovirus Capsid Proteins Produced by Recombinant Baculoviruses Assemble into Virion-like Particles in Cells and Larvae of Bombyx mori. Virology, 1995, 213, 204-212.	1.1	19
92	Symptom Severity of Beet Western Yellows Virus Strain ST9 Is Conferred by the ST9-Associated RNA and Is Not Associated with Virus Release from the Phloem. Virology, 1994, 200, 48-55.	1.1	61
93	Will transgenic crops generate new viruses and new diseases?. Science, 1994, 263, 1395-1396.	6.0	92
94	The Beet Western Yellows Virus ST9-Associated RNA Shares Structural and Nucleotide Sequence Homology with Carmo-like Viruses. Virology, 1993, 192, 473-482.	1.1	35
95	The Maize Stripe Virus Major Noncapsid Protein Messenger RNA Transcripts Contain Heterogeneous Leader Sequences at Their 5′ Termini. Virology, 1993, 197, 808-812.	1.1	44
96	Nucleotide sequence and RNA hybridization analyses reveal an ambisense coding strategy for maize stripe virus RNA3. Virology, 1991, 182, 47-53.	1.1	32
97	Identification and sequence analysis of the maize stripe virus major noncapsid protein gene. Virology, 1990, 179, 862-866.	1.1	19
98	The Two Capsid Proteins of Maize Rayado Fino Virus Contain Common Peptide Sequences. Intervirology, 1986, 25, 111-116.	1.2	18