
Albano Cavaleiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1557665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A revised interpretation of the mechanisms governing low friction tribolayer formation in alloyed-TMD self-lubricating coatings. Applied Surface Science, 2022, 571, 151302.	3.1	5
2	Tribological behaviour of W-S-C coated ceramics in a vacuum environment. Tribology International, 2022, 167, 107375.	3.0	3
3	HiPIMS pulse shape influence on the deposition of diamond-like carbon films. Surface and Coatings Technology, 2022, 432, 128059.	2.2	8
4	Comparative study on the nanomechanical behavior and physical properties influenced by the epitaxial growth mechanisms of GaN thin films. Applied Surface Science, 2022, 579, 152188.	3.1	11
5	TiAlSiN(Ag) coatings for high temperature applications: The influence of Ag alloying on the morphology, structure, thermal stability and oxidation resistance. Surface and Coatings Technology, 2022, 442, 128087.	2.2	7
6	Adhesion of Amorphous Carbon Nanofilms on Ferrous Alloy Substrates Using a Nanoscale Silicon Interlayer: Implications for Solid-State Lubrication. ACS Applied Nano Materials, 2022, 5, 3763-3772.	2.4	2
7	Exploring the industrial implementation of W–S–NÂcoatings: a detailed study of the synthesis, compositional, structural, mechanical and multi-environment lubrication properties. Journal of Materials Research and Technology, 2022, 18, 547-563.	2.6	3
8	Mo-Se-N dry lubricant coatings as a universal solution for protecting surfaces of complex 3D parts. Materials Letters, 2022, 316, 131967.	1.3	2
9	Synergetic effect of thickness and oxygen addition on the electrochemical behaviour of tantalum oxide coatings deposited by HiPIMS in DOMS mode. Electrochimica Acta, 2022, 423, 140497.	2.6	4
10	Immobilization of Streptavidin on a Plasmonic Au-TiO2 Thin Film towards an LSPR Biosensing Platform. Nanomaterials, 2022, 12, 1526.	1.9	6
11	Effect of Annealing Heat Treatment on the Composition, Morphology, Structure and Mechanical Properties of the W-S-N Coatings. Materials, 2022, 15, 4088.	1.3	0
12	On the tribological performance of laser-treated self-lubricating thin films in contact with rubber. Tribology International, 2022, 174, 107758.	3.0	3
13	Galvanic oxidation of bimetallic Zn-Fe nanoparticles for oxygen scavenging. Applied Surface Science, 2021, 537, 147896.	3.1	7
14	Microstructural, mechanical, thermal stability and oxidation behavior of TiSiN/CrV N multilayer coatings deposited by D.C. reactive magnetron sputtering. Surface and Coatings Technology, 2021, 405, 126593.	2.2	14
15	Tribological performance of DLC coatings deposited by DOMS in mixed Ar-Ne discharges. Materials Letters, 2021, 285, 129056.	1.3	9
16	The influence of the deposition pressure on the composition and the mechanical properties of W–S–C coatings deposited by magnetron sputtering in semi-industrial conditions. Vacuum, 2021, 184, 109963.	1.6	5
17	An insight on the MoS2 tribo-film formation to determine the friction performance of Mo-S-N sputtered coatings. Surface and Coatings Technology, 2021, 408, 126791.	2.2	8
18	Effect of Peak Power in Deep Oscillation Magnetron Sputtering on Film Properties. Journal of Materials Engineering and Performance, 2021, 30, 3912-3924.	1.2	1

#	Article	IF	CITATIONS
19	On the Microstructural, Mechanical and Tribological Properties of Mo-Se-C Coatings and Their Potential for Friction Reduction against Rubber. Materials, 2021, 14, 1336.	1.3	5
20	Structure, Morphology, Thermal Stability and Oxidation Resistance of Multilayered TiSiN/VN Films: Influence of TiSiN-Layer Thickness. Journal of Materials Engineering and Performance, 2021, 30, 3934-3941.	1.2	2
21	Machining performance of TiSiN(Ag) coated tools during dry turning of TiAl6V4 aerospace alloy. Ceramics International, 2021, 47, 11799-11806.	2.3	21
22	Failure of Solid Lubricant W-S-C Coatings under Boundary Lubrication Conditions. Journal of Materials Engineering and Performance, 2021, 30, 3990-3999.	1.2	1
23	High Si multilayered TiSiN/TiN(Ag) films with superior oxidation resistance. Journal of Materials Research and Technology, 2021, 12, 2340-2347.	2.6	12
24	Development of Nanocomposite Coating by Hybrid Gas Condensation Process and Magnetron Sputtering Equipment: Electrochemical Characteristics and Surface Analysis. Journal of Materials Engineering and Performance, 2021, 30, 4083-4093.	1.2	1
25	Robust LSPR Sensing Using Thermally Embedded Au Nanoparticles in Glass Substrates. Nanomaterials, 2021, 11, 1592.	1.9	8
26	REACH regulation challenge: Development of alternative coatings to hexavalent chromium for minting applications. Surface and Coatings Technology, 2021, 418, 127271.	2.2	13
27	Performance of diamond-like carbon coatings (produced by the innovative Ne-HiPIMS technology) under different lubrication regimes. Wear, 2021, 477, 203775.	1.5	11
28	Diffusion of silver in titanium nitride: Insights from density functional theory and molecular dynamics. Applied Surface Science, 2021, 556, 149738.	3.1	10
29	Cr-Based Sputtered Decorative Coatings for Automotive Industry. Materials, 2021, 14, 5527.	1.3	12
30	Influence of Ag additions on the structure, mechanical properties and oxidation behaviour of CrAlNAg coatings deposited by sputtering. Surface and Coatings Technology, 2021, 426, 127767.	2.2	16
31	Growth temperature effect on physical and mechanical properties of nitrogen rich InN epilayers. Journal of Alloys and Compounds, 2021, 885, 160951.	2.8	11
32	Advanced Tribological Characterization of DLC Coatings Produced by Ne-HiPIMS for the Application on the Piston Rings of Internal Combustion Engines. Applied Sciences (Switzerland), 2021, 11, 10498.	1.3	10
33	Carbon-Based Coatings in Medical Textiles Surface Functionalisation: An Overview. Processes, 2021, 9, 1997.	1.3	7
34	Dielectric Properties of Shape-Distributed Ellipsoidal Particle Systems. Plasmonics, 2020, 15, 379-397.	1.8	8
35	Correlation between Substrate Ion Fluxes and the Properties of Diamond-Like Carbon Films Deposited by Deep Oscillation Magnetron Sputtering in Ar and Ar + Ne Plasmas. Coatings, 2020, 10, 914.	1.2	8
36	High temperature tribological behaviour of TiSiN(Ag) films deposited by HiPIMS in DOMS mode. Surface and Coatings Technology, 2020, 399, 126176.	2.2	19

#	Article	IF	CITATIONS
37	Nanotribological Investigation of Sliding Properties of Transition Metal Dichalcogenide Thin Film Coatings. ACS Applied Materials & Interfaces, 2020, 12, 54191-54202.	4.0	9
38	Role of Au incorporation in the electrochemical behavior of Ag/a:C nanocomposite coatings. Surface and Coatings Technology, 2020, 401, 126240.	2.2	8
39	Mechanical Properties and Vacuum Tribological Performance of Mo–S–N Sputtered Coatings. ACS Applied Materials & Interfaces, 2020, 12, 43299-43310.	4.0	15
40	Effect of the Substrate Biasing on the Structure and Properties of Tantalum Coatings Deposited Using HiPIMS in Deep Oscillations Magnetron Sputtering Mode. Metals, 2020, 10, 1618.	1.0	6
41	Room and High Temperature Tribological Performance of Multilayered TiSiN/TiN and TiSiN/TiN(Ag) Coatings Deposited by Sputtering. Coatings, 2020, 10, 1191.	1.2	13
42	Synthesis, microstructure and mechanical properties of W–S–C self-lubricant thin films deposited by magnetron sputtering. Tribology International, 2020, 150, 106363.	3.0	16
43	Influence of Ag alloying on the morphology, structure, mechanical properties, thermal stability and oxidation resistance of multilayered TiSiN/Ti(Ag)N films. Materials and Design, 2020, 192, 108703.	3.3	20
44	Antibacterial Effects of Bimetallic Clusters Incorporated in Amorphous Carbon for Stent Application. ACS Applied Materials & Interfaces, 2020, 12, 24555-24563.	4.0	20
45	Synthesis and structural properties of Mo-S-N sputtered coatings. Applied Surface Science, 2020, 527, 146790.	3.1	18
46	Synthesis, Microstructural, and Mechano-Tribological Properties of Self-Lubricating W-S-C(H) Thin Films Deposited by Different RF Magnetron Sputtering Procedures. Coatings, 2020, 10, 272.	1.2	12
47	Low peak power deposition regime in HiPIMS: Deposition of hard and dense nanocomposite Ti-Si-N films by DOMS without the need of energetic bombardment. Surface and Coatings Technology, 2020, 397, 125996.	2.2	16
48	Comparative Study of DC and RF Sputtered MoSe2 Coatings Containing Carbon—An Approach to Optimize Stoichiometry, Microstructure, Crystallinity and Hardness. Coatings, 2020, 10, 133.	1.2	17
49	The effect of substrate location on the composition, microstructure and mechano-tribological properties of W-S-C coatings deposited by magnetron sputtering. Surface and Coatings Technology, 2020, 386, 125481.	2.2	14
50	Tribological and milling performance of NbC–Ni films deposited by sputtering with different Ni contents. Tribology International, 2020, 147, 106281.	3.0	6
51	Au-WO3 Nanocomposite Coatings for Localized Surface Plasmon Resonance Sensing. Materials, 2020, 13, 246.	1.3	12
52	Nanocomposite Au-ZnO thin films: Influence of gold concentration and thermal annealing on the microstructure and plasmonic response. Surface and Coatings Technology, 2020, 385, 125379.	2.2	8
53	Room and High Temperature Tribological Behaviour of W-DLC Coatings Produced by DCMS and Hybrid DCMS-HiPIMS Configuration. Coatings, 2020, 10, 319.	1.2	38
54	Influence of laser structural patterning on the tribological performance of C-alloyed W-S coatings. Surface and Coatings Technology, 2020, 394, 125822.	2.2	9

#	Article	IF	CITATIONS
55	Tribological performance of hybrid surfaces: dimple-shaped anodized Al alloy surfaces coated with WS-CF sputtered thin films. International Journal of Advanced Manufacturing Technology, 2020, 107, 3931-3941.	1.5	7
56	Influence of base pressure prior to deposition on the adhesion behaviour of carbon thin films on steel. Applied Surface Science Advances, 2020, 2, 100034.	2.9	11
57	Molybdenum diselenide coatings as universal dry lubricants for terrestrial and aerospace applications. Materials Letters, 2020, 275, 128035.	1.3	15
58	Synthesis, microstructural and mechanical properties of self-lubricating Mo-Se-C coatings deposited by closed-field unbalanced magnetron sputtering. Surface and Coatings Technology, 2020, 394, 125889.	2.2	11
59	Insights into the wear track evolution with sliding cycles of carbon-alloyed transition metal dichalcogenide coatings. Surface and Coatings Technology, 2020, 403, 126360.	2.2	9
60	Oxidation behaviour of TiSiN(Ag) films deposited by high power impulse magnetron sputtering. Thin Solid Films, 2019, 688, 137423.	0.8	15
61	Fe based (W,Ti)C EAS and WC-12Co HVOF sprayed coatings: microstructure, mechanical properties and micro-scale abrasion performance. Materials Research Express, 2019, 6, 096580.	0.8	2
62	Diamond-like carbon coatings deposited by deep oscillation magnetron sputtering in Ar-Ne discharges. Diamond and Related Materials, 2019, 98, 107521.	1.8	22
63	The wettability and tribological behaviour of thin F-doped WS2 films deposited by magnetron sputtering. Surface and Coatings Technology, 2019, 378, 125033.	2.2	9
64	Electrochemical Corrosion of Nano-Structured Magnetron-Sputtered Coatings. Coatings, 2019, 9, 682.	1.2	21
65	DCMS Mo-Se-C solid lubricant coatings – Synthesis, structural, mechanical and tribological property investigation. Surface and Coatings Technology, 2019, 378, 124992.	2.2	14
66	TiSiN(Ag) films deposited by HiPIMS working in DOMS mode: Effect of Ag content on structure, mechanical properties and thermal stability. Applied Surface Science, 2019, 478, 426-434.	3.1	24
67	An experimental and theoretical study on the crystal structure and elastic properties of Ta1â^'xOx coatings. Surface and Coatings Technology, 2019, 364, 289-297.	2.2	1
68	Ag release from sputtered Ag/a:C nanocomposite films after immersion in pure water and NaCl solution. Thin Solid Films, 2019, 671, 85-94.	0.8	15
69	Influence of Ag additions on the structure, mechanical properties and oxidation behaviour of Cr-O coatings deposited by HiPIMS. Surface and Coatings Technology, 2018, 339, 167-180.	2.2	15
70	Production of Au clusters by plasma gas condensation and their incorporation in oxide matrixes by sputtering. Applied Surface Science, 2018, 440, 144-152.	3.1	5
71	Fluorine-carbon doping of WS-based coatings deposited by reactive magnetron sputtering for low friction purposes. Applied Surface Science, 2018, 445, 575-585.	3.1	15
72	Reduced atomic shadowing in HiPIMS: Role of the thermalized metal ions. Applied Surface Science, 2018, 433, 934-944.	3.1	27

#	Article	IF	CITATIONS
73	On the role of the energetic species in TiN thin film growth by reactive deep oscillation magnetron sputtering in Ar/N2. Thin Solid Films, 2018, 645, 253-264.	0.8	25
74	Hard and dense diamond like carbon coatings deposited by deep oscillations magnetron sputtering. Surface and Coatings Technology, 2018, 336, 92-98.	2.2	29
75	Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure. Tribology International, 2018, 119, 345-353.	3.0	45
76	Ex-vivo studies on friction behaviour of ureteral stent coated with Ag clusters incorporated in a:C matrix. Diamond and Related Materials, 2018, 86, 1-7.	1.8	13
77	NbC-Ni coatings deposited by DC reactive magnetron sputtering: Effect of Ni content on mechanical properties, thermal stability and oxidation resistance. Surface and Coatings Technology, 2018, 349, 1018-1031.	2.2	7
78	Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films. Surface and Coatings Technology, 2017, 313, 158-167.	2.2	60
79	Grooved surface texturing by electrical discharge machining (EDM) under different lubrication regimes. Lubrication Science, 2017, 29, 493-501.	0.9	19
80	Local Response of Sialoliths to Lithotripsy: Cues on Fragmentation Outcome. Microscopy and Microanalysis, 2017, 23, 584-598.	0.2	3
81	Water and oil wettability of anodized 6016 aluminum alloy surface. Applied Surface Science, 2017, 422, 430-442.	3.1	42
82	Phase tailoring of tantalum thin films deposited in deep oscillation magnetron sputtering mode. Surface and Coatings Technology, 2017, 314, 97-104.	2.2	27
83	Broadband Optical Absorption Caused by the Plasmonic Response of Coalesced Au Nanoparticles Embedded in a TiO ₂ Matrix. Journal of Physical Chemistry C, 2016, 120, 16931-16945.	1.5	31
84	Additional control of bombardment by deep oscillation magnetron sputtering: Effect on the microstructure and topography of Cr thin films. Thin Solid Films, 2016, 619, 250-260.	0.8	17
85	Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates. Applied Surface Science, 2016, 377, 283-291.	3.1	55
86	Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films: Antibacterial application. Surface and Coatings Technology, 2016, 298, 1-6.	2.2	22
87	Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering. Progress in Materials Science, 2016, 84, 158-191.	16.0	116
88	Self-lubricating TiSi(V)N thin films deposited by deep oscillation magnetron sputtering (DOMS). Surface and Coatings Technology, 2016, 308, 256-263.	2.2	22
89	Influence of the silicon and oxygen content on the properties of non-hydrogenated amorphous carbon coatings. Diamond and Related Materials, 2016, 70, 201-210.	1.8	35
90	Optical and microstructural properties of Au alloyed Al–O sputter deposited coatings. Thin Solid Films, 2016, 598, 65-71.	0.8	7

#	Article	IF	CITATIONS
91	Effect of Nb target power on the structure, mechanical properties, thermal stability and oxidation resistance of Cr–Al–Nb–N coatings. Surface and Coatings Technology, 2016, 285, 270-277.	2.2	16
92	Characterization of surface Ag nanoparticles in nanocomposite a-C:Ag coatings by grazing incidence X-ray diffraction at sub-critical angles of incidence. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	6
93	CrN thin films deposited by HiPIMS in DOMS mode. Surface and Coatings Technology, 2016, 291, 365-375.	2.2	64
94	Bioactivity response of Ta 1-x O x coatings deposited by reactive DC magnetron sputtering. Materials Science and Engineering C, 2016, 58, 110-118.	3.8	24
95	Microstructural characterization of WC-AISI304 composites obtained by selective laser sintering. Microscopy and Microanalysis, 2015, 21, 104-105.	0.2	1
96	Influence of hydrogen incorporation and coating thickness on the corrosion resistance of carbon based coatings deposited by magnetron sputtering. Surface and Coatings Technology, 2015, 275, 127-132.	2.2	6
97	Tribological characterization of TiO 2 /Au decorative thin films obtained by PVD magnetron sputtering technology. Wear, 2015, 330-331, 419-428.	1.5	13
98	Effect of the substrate dilution on the room and high temperature tribological behaviour of Ni-based coatings deposited by PTA on grey cast iron. Surface and Coatings Technology, 2015, 281, 11-19.	2.2	22
99	Thin films composed of gold nanoparticles dispersed in a dielectric matrix: The influence of the host matrix on the optical and mechanical responses. Thin Solid Films, 2015, 596, 8-17.	0.8	28
100	Structure, mechanical and tribological properties of self-lubricant W–S–N coatings. Surface and Coatings Technology, 2015, 261, 7-14.	2.2	47
101	Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing. Applied Surface Science, 2015, 331, 161-169.	3.1	5
102	Tailoring the nanostructure of Ti–Si–N thin films by HiPIMS in deep oscillation magnetron sputtering (DOMS) mode. Surface and Coatings Technology, 2015, 264, 140-149.	2.2	45
103	Electrochemical response of ZrCN-Ag-a(C,N) coatings in simulated body fluids. Electrochimica Acta, 2015, 176, 898-906.	2.6	13
104	Oxidation and diffusion processes during annealing of TiSi(V)N films. Surface and Coatings Technology, 2015, 275, 120-126.	2.2	24
105	Electrochemical vs antibacterial characterization of ZrCN–Ag coatings. Surface and Coatings Technology, 2015, 275, 357-362.	2.2	7
106	Chemical and structural characterization of ZrCNAg coatings: XPS, XRD and Raman spectroscopy. Applied Surface Science, 2015, 346, 240-247.	3.1	61
107	Microstructural evolution of Au/TiO2 nanocomposite films: The influence of Au concentration and thermal annealing. Thin Solid Films, 2015, 580, 77-88.	0.8	43
108	Ni–Ti(–Cu) shape memory alloy interlayers supporting low friction functional coatings. Tribology International, 2015, 88, 135-142.	3.0	5

#	Article	IF	CITATIONS
109	Tribological behavior of uncoated and DLC-coated CoCr and Ti-alloys in contact with UHMWPE and PEEK counterbodies. Tribology International, 2015, 89, 97-104.	3.0	22
110	Ag y :TiN x thin films for dry biopotential electrodes: the effect of composition and structural changes on the electrical and mechanical behaviours. Applied Physics A: Materials Science and Processing, 2015, 119, 169-178.	1.1	2
111	Structural and functional properties of nanocomposite Au–WO3 coatings. Surface and Coatings Technology, 2015, 280, 201-207.	2.2	6
112	Thin films composed of Ag nanoclusters dispersed in TiO2: Influence of composition and thermal annealing on the microstructure and physical responses. Applied Surface Science, 2015, 358, 595-604.	3.1	28
113	A High-Resolution TEM/EELS Study of the Effect of Doping Elements on the Sliding Mechanisms of Sputtered WS2Coatings. Tribology Transactions, 2015, 58, 113-118.	1.1	11
114	Silver surface segregation in Ag-DLC nanocomposite coatings. Surface and Coatings Technology, 2015, 267, 90-97.	2.2	42
115	Structural and mechanical properties of nanocrystalline Zr co-sputtered a-C(:H) amorphous films. Applied Surface Science, 2015, 325, 64-72.	3.1	24
116	Tribological properties of self-lubricating TiSiVN coatings at room temperature. Surface and Coatings Technology, 2015, 267, 8-14.	2.2	27
117	Biotribological behavior of Ag–ZrCxN1â^'x coatings against UHMWPE for joint prostheses devices. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 83-91.	1.5	7
118	Evolution of the surface plasmon resonance of Au:TiO2 nanocomposite thin films with annealing temperature. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	27
119	High temperature behavior of nanolayered CrAlTiN coating: Thermal stability, oxidation, and tribological properties. Surface and Coatings Technology, 2014, 257, 70-77.	2.2	30
120	DLC-W coatings tested in combustion engine — Frictional and wear analysis. Surface and Coatings Technology, 2014, 260, 284-289.	2.2	34
121	Tribological behaviour of W-alloyed carbon-based coatings in dry and lubricated sliding contact. Lubrication Science, 2014, 26, 428-439.	0.9	11
122	Optical properties and refractive index sensitivity of reactive sputtered oxide coatings with embedded Au clusters. Journal of Applied Physics, 2014, 115, 063512.	1.1	19
123	Effect of clustering on the surface plasmon band in thin films of metallic nanoparticles. Journal of Nanophotonics, 2014, 9, 093796.	0.4	9
124	Titanium Substrate Surfaces Coated with Hydroxyapatite by Magnetron Sputtering. Materials Science Forum, 2014, 798-799, 472-477.	0.3	0
125	Optical response of fractal aggregates of polarizable particles. , 2014, , .		0
126	Structural and electrochemical characterization of Zr–C–N–Ag coatings deposited by DC dual magnetron sputtering. Corrosion Science, 2014, 80, 229-236.	3.0	31

#	Article	IF	CITATIONS
127	Structural, chemical, optical and mechanical properties of Au doped AlN sputtered coatings. Surface and Coatings Technology, 2014, 255, 130-139.	2.2	9
128	Ag:TiN nanocomposite thin films for bioelectrodes: The effect of annealing treatments on the electrical and mechanical behavior. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	6
129	Effect of rough surface patterning on the tribology of W–S–C–Cr self-lubricant coatings. Tribology International, 2014, 69, 77-83.	3.0	22
130	The effect of increasing V content on the structure, mechanical properties and oxidation resistance of Ti–Si–V–N films deposited by DC reactive magnetron sputtering. Applied Surface Science, 2014, 289, 114-123.	3.1	54
131	Effect of peak target power on the properties of Cr thin films sputtered by HiPIMS in deep oscillation magnetron sputtering (DOMS) mode. Surface and Coatings Technology, 2014, 258, 249-256.	2.2	63
132	Production and Characterization of Ag Nanoclusters Produced by Plasma Gas Condensation. Plasma Processes and Polymers, 2014, 11, 629-638.	1.6	18
133	Influence of Zr alloying on the mechanical properties, thermal stability and oxidation resistance of Cr–Al–N coatings. Applied Surface Science, 2014, 317, 269-277.	3.1	33
134	Sliding properties of Zr-DLC coatings: The effect of tribolayer formation. Surface and Coatings Technology, 2014, 258, 734-745.	2.2	32
135	Study of the effect of the silver content on the structural and mechanical behavior of Ag–ZrCN coatings for orthopedic prostheses. Materials Science and Engineering C, 2014, 42, 782-790.	3.8	21
136	Adsorption of bovine serum albumin on Zr co-sputtered a-C(:H) films: Implication on wear behaviour. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 316-327.	1.5	19
137	Sliding Properties of MoS ₂ Layers: Load and Interlayer Orientation Effects. Journal of Physical Chemistry C, 2014, 118, 13809-13816.	1.5	106
138	Prediction of optimized composition for enhanced mechanical and electrochemical response of Zr-C-N-Ag coatings for medical devices. Applied Surface Science, 2014, 320, 570-580.	3.1	11
139	Frictional properties of self-adaptive chromium doped tungsten–sulfur–carbon coatings at nanoscale. Applied Surface Science, 2014, 303, 381-387.	3.1	11
140	Structure and ionic conductivity of reactively sputtered apatite-type lanthanum silicate thin films. Surface and Coatings Technology, 2014, 247, 14-19.	2.2	7
141	Novel two-step processing route combining mechanical alloying and microwave hybrid sintering to fabricate dense La9.33Si2Ge4O26 for SOFCs. Journal of Power Sources, 2013, 231, 146-152.	4.0	21
142	High temperature properties of the Cr Nb Al N coatings with increasing Al contents. Surface and Coatings Technology, 2013, 228, 187-194.	2.2	17
143	Influence of Al content on the mechanical properties and thermal stability in protective and oxidation atmospheres of Zr–Cr–Al–N coatings. Surface and Coatings Technology, 2013, 236, 239-245.	2.2	19
144	Ultra-low friction W–S–N solid lubricant coating. Surface and Coatings Technology, 2013, 232, 541-548.	2.2	57

#	Article	IF	CITATIONS
145	Modulated IR Radiometry Applied to Study \$\$ext{ TiO}_{2}\$\$ Coatings with Gold Nanocluster Inclusions. International Journal of Thermophysics, 2013, 34, 1597-1605.	1.0	3
146	a-C(:H) and a-C(:H)_Zr coatings deposited on biomedical Ti-based substrates: Tribological properties. Thin Solid Films, 2013, 538, 89-96.	0.8	24
147	Influence of Ag content on mechanical and tribological behavior of DLC coatings. Surface and Coatings Technology, 2013, 232, 440-446.	2.2	98
148	Ag+ release and corrosion behavior of zirconium carbonitride coatings with silver nanoparticles for biomedical devices. Surface and Coatings Technology, 2013, 222, 104-111.	2.2	21
149	Nanocrystalline Au:Ag:SnO2 films prepared by pulsed magnetron sputtering. Journal of Physics and Chemistry of Solids, 2013, 74, 825-829.	1.9	14
150	Influence of nanostructured ZrO2 additions on the wear resistance of Ni-based alloy coatings deposited by APS process. Wear, 2013, 303, 591-601.	1.5	19
151	Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion. Wear, 2013, 306, 304-310.	1.5	47
152	Frictional behavior of self-adaptive nanostructural Mo–Se–C coatings in different sliding conditions. Wear, 2013, 303, 286-296.	1.5	33
153	Ag ⁺ release inhibition from ZrCN–Ag coatings by surface agglomeration mechanism: structural characterization. Journal Physics D: Applied Physics, 2013, 46, 325303.	1.3	55
154	TiO ₂ coatings with Au nanoparticles analysed by photothermal IR radiometry. Journal Physics D: Applied Physics, 2012, 45, 105301.	1.3	17
155	Wear resistance of a nickel-based coating deposited by PTA on grey cast iron. International Journal of Surface Science and Engineering, 2012, 6, 201.	0.4	6
156	The influence of annealing treatments on the properties of Ag:TiO2 nanocomposite films prepared by magnetron sputtering. Applied Surface Science, 2012, 258, 4028-4034.	3.1	49
157	Pulsed direct current magnetron sputtered nanocrystalline tin oxide films. Applied Surface Science, 2012, 258, 8902-8907.	3.1	15
158	Complex frictional analysis of self-lubricant W-S-C/Cr coating. Faraday Discussions, 2012, 156, 383.	1.6	63
159	Oxidation behavior of Ni-based coatings deposited by PTA on gray cast iron. Surface and Coatings Technology, 2012, 207, 196-203.	2.2	35
160	Effect of annealing temperature on the properties of pulsed magnetron sputtered nanocrystalline Ag:SnO2 films. Materials Chemistry and Physics, 2012, 133, 1024-1028.	2.0	5
161	Structural and optical studies of Au doped titanium oxide films. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 61-65.	0.6	16
162	Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings. Surface and Coatings Technology, 2012, 206, 2192-2198.	2.2	46

#	Article	IF	CITATIONS
163	Structural and mechanical properties of Au alloyed AlO sputter deposited coatings. Surface and Coatings Technology, 2012, 206, 2740-2745.	2.2	12
164	Lanthanum silicate thin films for SOFC electrolytes synthesized by magnetron sputtering and subsequent annealing. Surface and Coatings Technology, 2012, 206, 3316-3322.	2.2	12
165	Influence of Al on the microstructure and mechanical properties of Cr–Zr–(Al–)N coatings with low and high Zr content. Surface and Coatings Technology, 2012, 206, 3764-3771.	2.2	20
166	Examination of the tribolayer formation of a self-lubricant W–S–C sputtered coating. Tribology International, 2012, 47, 188-193.	3.0	22
167	Nanocrystalline SnO2 and Au:SnO2 thin films prepared by direct current magnetron reactive sputtering. Vacuum, 2012, 86, 1323-1327.	1.6	11
168	In-service behaviour of (Ti,Si,Al)Nx nanocomposite films. Wear, 2012, 274-275, 68-74.	1.5	24
169	Mapping the micro-abrasion resistance of a Ni-based coating deposited by PTA on gray cast iron. Wear, 2012, 292-293, 151-158.	1.5	15
170	Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing. Journal of Applied Physics, 2011, 109, .	1.1	74
171	Thermal stability in oxidative and protective environments of a-C:H cap layer on a functional gradient coating. Diamond and Related Materials, 2011, 20, 57-63.	1.8	22
172	Nanocomposite Thin Films Resulting from Au Nanoclusters Dispersed in Titanium Oxide Dielectric Matrixes: the Surface Plasmon Resonance Effect. , 2011, , .		3
173	Carbon-based coatings doped by copper: Tribological and mechanical behavior in olive oil lubrication. Surface and Coatings Technology, 2011, 205, S79-S83.	2.2	17
174	Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon. Surface and Coatings Technology, 2011, 206, 686-695.	2.2	165
175	Structure and tribological properties of AlCrTiN coatings at elevated temperature. Surface and Coatings Technology, 2011, 205, S107-S110.	2.2	13
176	High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surface and Coatings Technology, 2011, 206, 1244-1251.	2.2	100
177	High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings – Structure and oxidation. Materials Chemistry and Physics, 2011, 129, 195-201.	2.0	107
178	An XPS study of Au alloyed Al–O sputtered coatings. Applied Surface Science, 2011, 257, 5793-5798.	3.1	106
179	Tribological behaviour a-C and a-C:H films doped with Ti in biological solutions. Vacuum, 2011, 85, 1144-1148.	1.6	14
180	Structural, mechanical and tribological properties of Mo–S–C solid lubricant coating. Surface and Coatings Technology, 2011, 205, 3274-3279.	2.2	60

#	Article	IF	CITATIONS
181	Effect of arc current on microstructure and wear characteristics of a Ni-based coating deposited by PTA on gray cast iron. Surface and Coatings Technology, 2011, 205, 4094-4106.	2.2	61
182	Properties of nanocomposite film combining hard TiN matrix with embedded fullerene-like WS2 nanoclusters. Thin Solid Films, 2011, 519, 3191-3195.	0.8	11
183	Self-adaptive low friction coatings based on transition metal dichalcogenides. Thin Solid Films, 2011, 519, 4037-4044.	0.8	53
184	Ag–Ti(C, N)-based coatings for biomedical applications: influence of silver content on the structural properties. Journal Physics D: Applied Physics, 2011, 44, 375501.	1.3	42
185	Influence of carbon content on the nanotribology of W-S-C films. International Journal of Surface Science and Engineering, 2011, 5, 3.	0.4	3
186	Influence of humidity on the tribological behaviour of W-alloyed C-based amorphous coatings. International Journal of Surface Science and Engineering, 2011, 5, 261.	0.4	1
187	Synthesis of zinc oxide nano-particles using carbon dioxide by DC plasma jet. Surface and Coatings Technology, 2010, 205, S79-S83.	2.2	9
188	Nanoscale color control of TiO2 films with embedded Au nanoparticles. Materials Letters, 2010, 64, 2624-2626.	1.3	45
189	Structure, mechanical properties and tribology of W–N and W–O coatings. International Journal of Refractory Metals and Hard Materials, 2010, 28, 15-22.	1.7	46
190	Effects of carbon content on the high temperature friction and wear of chromium carbonitride coatings. Tribology International, 2010, 43, 1228-1233.	3.0	26
191	A unique approach to reveal the nanocomposite nc-MN/SiN-layer architecture of thin films via electrical measurements. Surface and Coatings Technology, 2010, 204, 1907-1913.	2.2	13
192	Functional and optical properties of Au:TiO2 nanocomposite films: The influence of thermal annealing. Applied Surface Science, 2010, 256, 6536-6542.	3.1	43
193	Sputtered YSZ based protective thin films for SOFCs. Surface Engineering, 2010, 26, 584-589.	1.1	4
194	Comparison of Structural and Electrical Properties of Barium Zirconate Pellets and Thin Films. Journal of the Electrochemical Society, 2010, 157, B1582.	1.3	16
195	Influence of Substrate Biasing on (Al, Ti)N Thin Films Deposited by a Hybrid HiPIMS/DC Sputtering Process. IEEE Transactions on Plasma Science, 2010, 38, 3040-3045.	0.6	10
196	Sliding mechanisms in tribological contact of TMD-C sputtered coatings. WIT Transactions on Engineering Sciences, 2010, , .	0.0	0
197	Comparison of Structural and Electrical Properties of Strontium Zirconate Pellets and Thin Films. ECS Transactions, 2009, 25, 1775-1783.	0.3	1
198	Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications. Solid State Sciences, 2009, 11, 1757-1761.	1.5	27

#	Article	IF	CITATIONS
199	How can H content influence the tribological behaviour of W-containing DLC coatings. Solid State Sciences, 2009, 11, 1778-1782.	1.5	32
200	Oxidation of magnetron sputtered La-Si thin films for solide oxide fuel cell electronlytes. Thin Solid Films, 2009, 517, 1895-1898.	0.8	9
201	Tribological behaviour of W–Ti–N coatings in semi-industrial strip-drawing tests. Journal of Materials Processing Technology, 2009, 209, 4662-4667.	3.1	19
202	Self‣ubricating W–S–C Nanocomposite Coatings. Plasma Processes and Polymers, 2009, 6, 417-424.	1.6	32
203	Can Wi£¿SeC Coatings Be Competitive to Wi£¿Si£¿C Ones?. Plasma Processes and Polymers, 2009, 6, S92.	1.6	16
204	Silicon Effect on the Hardness of r.f. Sputtered B–C:Si Amorphous Films. Plasma Processes and Polymers, 2009, 6, S141.	1.6	4
205	Tribological Performance of CrAlSiN Coatings at High Temperatures. Plasma Processes and Polymers, 2009, 6, S935.	1.6	22
206	Deposition of TiN-WS2 Nanocomposite Coatings by a Hybrid Process: Reactive Sputtering and Clusters Gun. Plasma Processes and Polymers, 2009, 6, S923-S927.	1.6	5
207	Comparative study of the tribological behavior of self-lubricating W–S–C and Mo–Se–C sputtered coatings. Wear, 2009, 266, 388-392.	1.5	47
208	Nanoindentation and nanoscratch behaviour of reactive sputtered deposited W–S–C film. Thin Solid Films, 2009, 518, 185-193.	0.8	32
209	High temperature tribology of CrN and multilayered Cr/CrN coatings. Surface and Coatings Technology, 2009, 203, 3254-3259.	2.2	70
210	Adhesion failures on hard coatings induced by interface anomalies. Vacuum, 2009, 83, 1213-1217.	1.6	18
211	Effects of O addition on the thermal behaviour of hard W–N sputtered coatings. Vacuum, 2009, 83, 1224-1227.	1.6	6
212	Experimental development and deposition of nanocomposite films by a hybrid dc magnetron sputtering and cluster gun technique. Vacuum, 2009, 83, 1257-1261.	1.6	7
213	Protective YSZ-based thin films deposited by RF magnetron sputtering. Vacuum, 2009, 83, 1266-1269.	1.6	8
214	Synthesis and properties of W–Se–C coatings deposited by PVD in reactive and non-reactive processes. Vacuum, 2009, 83, 1262-1265.	1.6	16
215	Mechanical and tribological properties of sputtered Mo–Se–C coatings. Wear, 2009, 266, 393-397.	1.5	32
216	Effect of Slight ZnO Addition on the Structural, Morphological and Electrical Properties of Barium Zirconate Pellets. ECS Transactions, 2009, 25, 1767-1774.	0.3	0

#	Article	IF	CITATIONS
217	Degradation of a C/CrC PVD coating after annealing in Ar+H ₂ at 700°C studied by Raman spectroscopy and transmission electron microscopy. Materials at High Temperatures, 2009, 26, 169-176.	0.5	3
218	Synthesis and structural properties of Mo–Se–C sputtered coatings. Surface and Coatings Technology, 2008, 202, 2418-2422.	2.2	28
219	Performance of W–TI-(N) coated pins in lubricated pin-on-disk tests. Surface and Coatings Technology, 2008, 202, 2338-2343.	2.2	12
220	In situ structural evolution of arc-deposited Cr-based coatings. Surface and Coatings Technology, 2008, 202, 5550-5555.	2.2	12
221	Tribological behaviour of C-alloyed transition metal dichalcogenides (TMD) coatings in different environments. International Journal of Mechanics and Materials in Design, 2008, 4, 137-143.	1.7	19
222	Synthesis and electrical properties of Ln2CuO4+ δ (Ln: Nd or La) mixed conductor sputter deposited coatings. Ionics, 2008, 14, 455-461.	1.2	3
223	Nanoscale triboactivity: The response of Mo–Se–C coatings to sliding. Acta Materialia, 2008, 56, 5101-5111.	3.8	50
224	Structural and Mechanical properties of Ti–Si–C–ON for biomedical applications. Surface and Coatings Technology, 2008, 202, 2403-2407.	2.2	8
225	Influence of air oxidation on the properties of decorative NbOxNy coatings prepared by reactive gas pulsing. Surface and Coatings Technology, 2008, 202, 2363-2367.	2.2	16
226	Study of the structural changes induced by air oxidation in Ti–Si–N hard coatings. Surface and Coatings Technology, 2008, 202, 2413-2417.	2.2	33
227	Structure and tribology of biocompatible Ti–C:H coatings. Surface and Coatings Technology, 2008, 202, 5790-5793.	2.2	36
228	Effect of the microstructure on the cutting performance of superhard (Ti,Si,Al)N nanocomposite films. Vacuum, 2008, 82, 1470-1474.	1.6	13
229	Hard amorphous Ti–Al–N coatings deposited by sputtering. Thin Solid Films, 2008, 516, 5032-5038.	0.8	35
230	Structural and tribological characterization of tungsten nitride coatings at elevated temperature. Wear, 2008, 265, 319-326.	1.5	53
231	Nanoscale colour control: W–O graded coatings deposited by magnetron sputtering. Nanotechnology, 2008, 19, 395202.	1.3	3
232	The Influence of the Substrate on the Mechanical Properties of Si-Doped DLC Thin Films. Materials Science Forum, 2008, 587-588, 839-843.	0.3	1
233	Mixed Si/Ge Apatite-Type Phase Produced by Mechanical Alloying. Materials Science Forum, 2008, 587-588, 128-132.	0.3	2
234	TEM investigation of MoSeC films. Microscopy and Microanalysis, 2008, 14, 7-10.	0.2	4

#	Article	IF	CITATIONS
235	TEM Characterization of W-O-N Coatings. Microscopy and Microanalysis, 2008, 14, 27-30.	0.2	8
236	Morphological and structural characterization of oxidized La-Si sputtered thin films. Microscopy and Microanalysis, 2008, 14, 81-84.	0.2	3
237	A simple model for the deposition of W-O coatings by reactive gas pulsing process. EPJ Applied Physics, 2008, 43, 321-325.	0.3	1
238	Characterization of W–O coatings deposited by magnetron sputtering with reactive gas pulsing. Surface and Coatings Technology, 2007, 201, 5481-5486.	2.2	20
239	Thermal behaviour of hard nanocomposite coatings within the W–Si–N system in oxidant and protective atmospheres. Surface and Coatings Technology, 2007, 201, 6154-6160.	2.2	12
240	Thermal stability of reactive sputtered tungsten oxide coatings. Surface and Coatings Technology, 2007, 201, 7076-7082.	2.2	18
241	Magnetron sputtered Ti–Si–C thin films prepared at low temperatures. Surface and Coatings Technology, 2007, 201, 7180-7186.	2.2	43
242	Tungsten oxide with different oxygen contents: Sliding properties. Vacuum, 2007, 81, 1426-1429.	1.6	32
243	The tribological behavior of W–S–C films in pin-on-disk testing at elevated temperature. Vacuum, 2007, 81, 1439-1442.	1.6	34
244	Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering. Wear, 2007, 262, 655-665.	1.5	66
245	Study of the Cathode Potential in a Sputtering Discharge by Pulsing the Reactive Gas: Case of a W Target in an Ar-O2 Atmosphere. Plasma Processes and Polymers, 2007, 4, 62-68.	1.6	5
246	Optical and Electrical Properties of W-O-N Coatings Deposited by DC Reactive Sputtering. Plasma Processes and Polymers, 2007, 4, S69-S75.	1.6	11
247	Modelling of Magnetron Sputtering of Tungsten Oxide with Reactive Gas Pulsing. Plasma Processes and Polymers, 2007, 4, S522-S526.	1.6	12
248	Friction of Self-Lubricating W-S-C Sputtered Coatings Sliding Under Increasing Load. Plasma Processes and Polymers, 2007, 4, S541-S546.	1.6	36
249	Tribological Behaviour of N(C)-Alloyed W–S Films. Tribology Letters, 2007, 28, 59-70.	1.2	22
250	From Ti–Al- to Ti–Al–N-sputtered 2D materials. Journal of Materials Science, 2007, 42, 9145-9153.	1.7	4
251	The influence of structure changes in the properties of TiCxOy decorative thin films. Thin Solid Films, 2007, 515, 5424-5429.	0.8	21
252	Hard a-C/DLC coatings on Si3N4–bioglass composites. Diamond and Related Materials, 2006, 15, 944-947.	1.8	4

#	Article	IF	CITATIONS
253	Fretting behaviour of W–Si coated steels in vacuum environments. Wear, 2006, 261, 79-85.	1.5	15
254	Structural evolution in ZrNxOy thin films as a function of temperature. Surface and Coatings Technology, 2006, 200, 2917-2922.	2.2	46
255	Duplex treatment: W–Ti–N sputtered coatings on pre-nitrided low and high alloy steels. Surface and Coatings Technology, 2006, 200, 4861-4869.	2.2	18
256	Characterization of W–Ge–N coatings deposited by sputtering. Surface and Coatings Technology, 2006, 200, 6303-6307.	2.2	8
257	Mechanical evaluation of unbiased W–O–N coatings deposited by d.c. reactive magnetron sputtering. Surface and Coatings Technology, 2006, 200, 6511-6516.	2.2	49
258	The structure and hardness of magnetron sputtered Ti–Al–N thin films with low N contents (<42) Tj ETQq0	0 0 rgBT /	Overlock 10 T
259	Structure, hardness and thermal stability of Ti(Al,N) coatings. Surface and Coatings Technology, 2006, 201, 4073-4077.	2.2	13
260	Characterization of magnetron co-sputtered W-doped C-based films. Thin Solid Films, 2006, 515, 1063-1068.	0.8	16
261	Synthesis, structural and mechanical characterization of sputtered tungsten oxide coatings. Thin Solid Films, 2006, 510, 191-196.	0.8	63
262	The Influence of Chemical Alloying on the High Temperature Wear Resistance of H-Free DLC Coatings. Advanced Materials Research, 2006, 15-17, 1026-1031.	0.3	0
263	Study of Abrasion Resistance of Steels by Micro-Scale Tests. Materials Science Forum, 2006, 514-516, 544-548.	0.3	2
264	The Influence of the Addition of Ti on the Mechanical Properties of W-S-Ti Coatings. Materials Science Forum, 2006, 514-516, 687-691.	0.3	6
265	The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part I—Nitrides. Nanostructure Science and Technology, 2006, , 261-314.	0.1	8
266	The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part II—Carbides. Nanostructure Science and Technology, 2006, , 315-346.	0.1	4
267	On the Structural Evaluation of Unbiased W-O-N Sputtered Coatings. Materials Science Forum, 2006, 514-516, 825-832.	0.3	8
268	Influence of substrate properties and annealing temperature on the stress state of magnetron sputtered tungsten thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 2070-2075.	0.9	6
269	Galileo Comes to the Surface!. Nanostructure Science and Technology, 2006, , 1-26.	0.1	4
270	Evolution of the microstructure, residual stresses, and mechanical properties of W–Si–N coatings after thermal annealing. Journal of Materials Research, 2005, 20, 1356-1368.	1.2	25

#	Article	IF	CITATIONS
271	On the microstructure of tungsten disulfide films alloyed with carbon and nitrogen. Thin Solid Films, 2005, 484, 389-395.	0.8	43
272	Effect of germanium addition on the properties of reactively sputtered ZrN films. Thin Solid Films, 2005, 492, 180-186.	0.8	18
273	Nanostructured TiC/a-C coatings for low friction and wear resistant applications. Surface and Coatings Technology, 2005, 198, 44-50.	2.2	114
274	Structure and mechanical properties of Ti–Al films deposited by magnetron sputtering. Surface and Coatings Technology, 2005, 200, 395-398.	2.2	7
275	Tribological behaviour of W–Ti–N sputtered thin films. Surface and Coatings Technology, 2005, 200, 186-191.	2.2	20
276	W–S–C sputtered films: Influence of the carbon alloying method on the mechanical properties. Surface and Coatings Technology, 2005, 200, 1076-1079.	2.2	22
277	Determination of the sp3 C content of a-C films through EELS analysis in the TEM. Surface and Coatings Technology, 2005, 200, 739-743.	2.2	29
278	Structural stability of decorative ZrNxOy thin films. Surface and Coatings Technology, 2005, 200, 748-752.	2.2	27
279	The nanostructure and microstructure of steels: Electrochemical Tafel behaviour and atomic force microscopy. Corrosion Science, 2005, 47, 2871-2882.	3.0	10
280	Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films. Journal of Applied Physics, 2005, 98, 023715.	1.1	87
281	Effect of the Substrate on the Fretting Wear of Sputtered W-Si-N Coatings Against Steel. , 2005, , .		0
282	Effect of Oxygen Doping on the Structure and Photoluminescence of PVD AlN(Er) Thin Films. Materials Science Forum, 2004, 455-456, 885-889.	0.3	0
283	Behaviour of Nanocomposite Coatings of W-S-N/C System under Pin-on-Disk Testing. Materials Science Forum, 2004, 455-456, 515-519.	0.3	6
284	Nanocomposite TiC/a-C coatings: structure and properties. Materials Research Society Symposia Proceedings, 2004, 843, 161.	0.1	1
285	Fretting Wear of Sputtered W-Si-N Coatings against Steel. Materials Science Forum, 2004, 455-456, 510-514.	0.3	0
286	Chemical and physical characterization of C(N)-doped W–S sputtered films. Journal of Materials Research, 2004, 19, 2356-2365.	1.2	57
287	The influence of erbium doping of Al–N sputtered coatings on their optical properties. Thin Solid Films, 2004, 446, 264-270.	0.8	15
288	Property change in ZrNxOy thin films: effect of the oxygen fraction and bias voltage. Thin Solid Films, 2004, 469-470, 11-17.	0.8	65

#	Article	IF	CITATIONS
289	Microstructure, mechanical properties and cutting performance of superhard (Ti,Si,Al)N nanocomposite films grown by d.c. reactive magnetron sputtering. Surface and Coatings Technology, 2004, 177-178, 459-468.	2.2	58
290	Structural changes in Zr–Si–N films vs. their silicon content. Surface and Coatings Technology, 2004, 180-181, 352-356.	2.2	62
291	Effect of the counterface material on the fretting behaviour of sputtered Wî—,Siî—,N coatings. Wear, 2003, 255, 276-286.	1.5	9
292	Mechanical behaviour of W–S–N and W–S–C sputtered coatings deposited with a Ti interlayer. Surface and Coatings Technology, 2003, 163-164, 552-560.	2.2	58
293	Influence of Ti addition on the properties of W–Ti–C/N sputtered films. Surface and Coatings Technology, 2003, 174-175, 68-75.	2.2	51
294	Effects of the morphology and structure on the elastic behavior of (Ti,Si,Al)N nanocomposites. Surface and Coatings Technology, 2003, 174-175, 984-991.	2.2	21
295	A certified reference material for the scratch test. Surface and Coatings Technology, 2003, 174-175, 1008-1013.	2.2	29
296	Oxygen sensitivity of erbium-doped AlN films probed by site selective spectroscopy. Optical Materials, 2003, 24, 321-325.	1.7	13
297	Structural and mechanical properties of amorphous W–Si–N sputtered films after thermal annealing. Thin Solid Films, 2003, 441, 150-160.	0.8	22
298	Achievement of Nanocrystalline Structures After Thermal Annealing Amorphous W-SI-N Sputtered Films. , 2003, , 383-411.		1
299	Structural and Thermal Behaviour of a W-Ti-N Sputtered Film after Thermal Annealing. Key Engineering Materials, 2002, 230-232, 627-630.	0.4	1
300	Effect of the Substrate Thermal Expansion Coefficient on the Thermal Residual Stresses in W-Si-N Sputtered Films. Key Engineering Materials, 2002, 230-232, 513-516.	0.4	6
301	Influence of Heat Treatment on the Structure of W-Si-N Sputtered Films. Key Engineering Materials, 2002, 230-232, 640-643.	0.4	7
302	Effect of Thermal Annealing on the Structure and Hardness of PVD AlN(Er). Key Engineering Materials, 2002, 230-232, 114-117.	0.4	2
303	Mechanical and Adhesion Behaviours of Superhard (Ti,Si,Al)N Nanocomposite Films Grown by Reactive Magnetron Sputtering. Key Engineering Materials, 2002, 230-232, 185-188.	0.4	0
304	Oxidation Behaviour of (TiAl)-Based Intermetallics Doped with Silver. Key Engineering Materials, 2002, 230-232, 60-63.	0.4	0
305	The influence of experimental parameters on hardness and Young's modulus determination using depth-sensing testing. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1911-1919.	0.8	9
306	Ultra-microhardness testing procedure with Vickers indenter. Surface and Coatings Technology, 2002, 149, 27-35.	2.2	141

#	Article	IF	CITATIONS
307	Influence of Al(Er) interlayer on the mechanical properties of AlN(Er) coatings. Surface and Coatings Technology, 2002, 151-152, 466-470.	2.2	15
308	The effects of a third element on structure and properties of W–C/N. Surface and Coatings Technology, 2002, 151-152, 495-504.	2.2	14
309	The depth profile analysis of W-Si-N coatings after thermal annealing. Surface and Coatings Technology, 2002, 161, 111-119.	2.2	18
310	Electrochemical corrosion of magnetron sputtered WTiN-coated mild steels in a chloride medium. Surface and Coatings Technology, 2002, 161, 257-266.	2.2	9
311	Nanocrystalline structure and hardness of thin films. Vacuum, 2002, 64, 211-218.	1.6	44
312	Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings. Thin Solid Films, 2001, 398-399, 391-396.	0.8	131
313	How is the chemical bonding of W–Si–N sputtered coatings?. Surface and Coatings Technology, 2001, 142-144, 964-970.	2.2	41
314	Elastic properties of (Ti,Al,Si)N nanocomposite films. Surface and Coatings Technology, 2001, 142-144, 110-116.	2.2	45
315	Mechanical and surface analysis of Ti0.4Al0.6N/Mo multilayers. Vacuum, 2001, 60, 339-346.	1.6	9
316	Influence of heat treatment on the corrosion of high speed steel. Journal of Applied Electrochemistry, 2001, 31, 65-72.	1.5	27
317	The influence of the addition of C and N on the wear behaviour of W–S–C/N coatings. Surface and Coatings Technology, 2001, 142-144, 984-991.	2.2	76
318	A model for coated surface hardness. Surface and Coatings Technology, 2000, 131, 457-461.	2.2	21
319	The influence of Er doping of Al–N sputtered coatings on their mechanical properties. Surface and Coatings Technology, 2000, 132, 99-104.	2.2	9
320	Characterisation of Ti1â^'xSixNy nanocomposite films. Surface and Coatings Technology, 2000, 133-134, 307-313.	2.2	190
321	Mechanical behaviour of amorphous W–Si–N sputtered films after thermal annealing at increasing temperatures. Surface and Coatings Technology, 2000, 123, 192-198.	2.2	32
322	Oxidation of sputtered W-based coatings. Surface and Coatings Technology, 2000, 131, 441-447.	2.2	14
323	A structural and mechanical analysis on PVD-grown (Ti,Al)N/Mo multilayers. Thin Solid Films, 2000, 377-378, 425-429.	0.8	20
324	Influence of Substrate Hardness on the Response of W–C–Co-coated Samples to Depth-sensing Indentation. Journal of Materials Research, 2000, 15, 1766-1772.	1.2	18

#	Article	IF	CITATIONS
325	Influence of sputtering conditions on corrosion of sputtered W–Ti–N thin film hard coatings: salt spray tests and image analysis. Corrosion Science, 2000, 42, 1881-1895.	3.0	29
326	The influence of small additions of Ni, Ti and C on the oxidation behaviour of sputtered tungsten coatings. Journal of Materials Processing Technology, 1999, 92-93, 162-168.	3.1	8
327	The role of nickel in the oxidation resistance of tungsten-based alloys. Surface and Coatings Technology, 1999, 116-119, 121-127.	2.2	17
328	Deposition and characterization of fine-grained W–Ni–C/N ternary films. Surface and Coatings Technology, 1999, 116-119, 944-948.	2.2	18
329	Hardness versus structure in W–Si–N sputtered coatings. Surface and Coatings Technology, 1999, 116-119, 74-80.	2.2	48
330	Use of ultramicroindentation to evaluate the degradation of sputtered coatings. Vacuum, 1999, 52, 157-162.	1.6	10
331	The oxidation behaviour of mixed tungsten silicon sputtered coatings. Thin Solid Films, 1999, 343-344, 51-56.	0.8	16
332	A comparison of the electrochemical behaviour of W–M–N (M=Ni, Ti, Al) thin film coatings on high speed steel. Thin Solid Films, 1998, 322, 263-273.	0.8	18
333	Physical and mechanical properties of Ti1 â^' xSixN films. Surface and Coatings Technology, 1998, 100-101, 110-115.	2.2	22
334	Thermal Oxidation of Tungstenâ€Based Sputtered Coatings. Journal of the Electrochemical Society, 1997, 144, 259-266.	1.3	41
335	Fluorocarbon and tungsten carbide multilayer coatings. Surface and Coatings Technology, 1997, 97, 680-686.	2.2	3
336	The ultimate vacuum pressure and the characteristics of sputtered coatings. Thin Solid Films, 1996, 290-291, 238-242.	0.8	8
337	Tribological behaviour at elevated temperatures of thin physical vapour deposited coatings. Surface and Coatings Technology, 1996, 80, 171-175.	2.2	10
338	Oxidation behaviour of W-N-M (M = Ni, Ti) sputtered films. Surface and Coatings Technology, 1995, 74-75, 998-1004.	2.2	17
339	Electrochemical Behaviour and Corrosion Resistance of Sputtered W-Ti-N Coatings on Steel Substrates. Materials Science Forum, 1995, 192-194, 797-804.	0.3	8
340	Study of tungsten sputtered films with low nitrogen content. Vacuum, 1994, 45, 1051-1053.	1.6	24
341	Influence of the target/shield distance on the coatings deposition by rf magnetron sputtering. Vacuum, 1994, 45, 1099-1100.	1.6	0
342	EVALUATION OF HARDNESS OF SPUTTERED W–C–Co THIN FILMS. Surface Engineering, 1994, 10, 147-151.	1.1	19

#	Article	IF	CITATIONS
343	Estimation of Young's Modulus and of Hardness by Ultra-Low Load Hardness Tests with a Vickers Indenter. Journal of Testing and Evaluation, 1994, 22, 365-369.	0.4	30
344	Structural analysis of sputtered (W-C)1â^'xMx (Mî—¼Fe, Co) films with 0⩽x⩽0.20. Surface and Coatings Technology, 1993, 60, 411-415.	2.2	8
345	Production and characterization of Si-N films obtained by r.f. magnetron sputtering. Surface and Coatings Technology, 1993, 60, 463-467.	2.2	14
346	Failure modes observed on worn surfaces of W-C-Co sputtered coatings. Surface and Coatings Technology, 1993, 62, 536-542.	2.2	14
347	Characterization of a sputtered amorphous Wî—,Cî—,Co coating annealed in air. Thin Solid Films, 1993, 228, 80-86.	0.8	6
348	Structural behaviour of sputtered W-C-Co coatings at increasing temperatures. Journal of Materials Science, 1993, 28, 6096-6102.	1.7	4
349	Influence of deposition conditions on the morphology of sputtered W-C-(Co) films. Thin Solid Films, 1992, 213, 6-12.	0.8	20
350	Structure and chemical composition of W-C-(Co) sputtered films. Thin Solid Films, 1991, 197, 237-255.	0.8	38
351	Influence of deposition conditions on the adhesion of sputter-deposited Wî—,Cî—,(Co) films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 140, 631-638.	2.6	9
352	Morphology and thickness distribution of sputtered W-C-Co films deposited on differently shaped substrates. Surface and Coatings Technology, 1991, 49, 311-315.	2.2	1
353	The structure of thin films deposited from a sintered tungsten carbide with a high cobalt content (15) Tj ETQq1 1	0,784314 0.8	· rœৣBT /Overl
354	Chemical and optical characterization of Niî—,P spectrally selective surfaces coated by fluorocarbon films. Solar Energy Materials and Solar Cells, 1990, 20, 245-256.	0.4	5
355	Surface Plasmon Resonance Effect on the Optical Properties of TiO ₂ Doped by Noble Metals Nanoparticles. Journal of Nano Research, 0, 18-19, 177-185.	0.8	8
356	Tribological performance of laserâ€ŧextured steel surfaces in unidirectional sliding lineâ€contact (blockâ€onâ€ring). Lubrication Science, 0, , .	0.9	4
357	Galileo Comes to the Surface!. , 0, , 1-26.		0
358	The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part l—Nitrides. , 0, , 261-314.		0
359	The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part II—Carbides. , 0, , 315-346.		0
360	Recent Progress toward the Development of TMD-Based Industrial Dry Lubricants for Multi-Environment Sliding. , 0, , .		0