Richard McKinley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1557232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Medical Image Analysis, 2017, 35, 250-269.	7.0	360
2	ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI. Frontiers in Neurology, 2018, 9, 679.	1.1	117
3	Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation. Medical Image Analysis, 2018, 44, 228-244.	7.0	76
4	Fully automated stroke tissue estimation using random forest classifiers (FASTER). Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2728-2741.	2.4	72
5	Stroke Lesion Outcome Prediction Based on MRI Imaging Combined With Clinical Information. Frontiers in Neurology, 2018, 9, 1060.	1.1	55
6	Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks. Scientific Reports, 2021, 11, 1087.	1.6	51
7	Relevance of the cerebral collateral circulation in ischaemic stroke: time is brain, but collaterals set the pace. Swiss Medical Weekly, 2017, 147, w14538.	0.8	46
8	Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence. NeuroImage: Clinical, 2020, 25, 102104.	1.4	42
9	A Machine Learning Approach to Perfusion Imaging With Dynamic Susceptibility Contrast MR. Frontiers in Neurology, 2018, 9, 717.	1.1	33
10	Direct cortical thickness estimation using deep learningâ€based anatomy segmentation and cortex parcellation. Human Brain Mapping, 2020, 41, 4804-4814.	1.9	33
11	Automatic quality control in clinical ¹ H MRSI of brain cancer. NMR in Biomedicine, 2016, 29, 563-575.	1.6	28
12	Nabla-net: A Deep Dag-Like Convolutional Architecture for Biomedical Image Segmentation. Lecture Notes in Computer Science, 2016, , 119-128.	1.0	24
13	Improving labeling efficiency in automatic quality control of MRSI data. Magnetic Resonance in Medicine, 2017, 78, 2399-2405.	1.9	13
14	A Fully Automated Pipeline for Normative Atrophy in Patients with Neurodegenerative Disease. Frontiers in Neurology, 2017, 8, 727.	1.1	13
15	Neural Network–derived Perfusion Maps for the Assessment of Lesions in Patients with Acute Ischemic Stroke. Radiology: Artificial Intelligence, 2019, 1, e190019.	3.0	13
16	Divide and Conquer: Stratifying Training Data by Tumor Grade Improves Deep Learning-Based Brain Tumor Segmentation. Frontiers in Neuroscience, 2019, 13, 1182.	1.4	13
17	Proof Nets for Herbrandâ \in ^M s Theorem. ACM Transactions on Computational Logic, 2013, 14, 1-31.	0.7	11
18	Segmenting the Ischemic Penumbra: A Decision Forest Approach with Automatic Threshold Finding. Lecture Notes in Computer Science, 2016, , 275-283.	1.0	9

RICHARD MCKINLEY

#	Article	IF	CITATIONS
19	Relating Acute Lesion Loads to Chronic Outcome in Ischemic Stroke–An Exploratory Comparison of Mismatch Patterns and Predictive Modeling. Frontiers in Neurology, 2018, 9, 737.	1.1	9
20	An Algorithmic Interpretation of a Deep Inference System. Lecture Notes in Computer Science, 2008, , 482-496.	1.0	9
21	Uncertainty-Driven Refinement of Tumor-Core Segmentation Using 3D-to-2D Networks with Label Uncertainty. Lecture Notes in Computer Science, 2021, , 401-411.	1.0	8
22	Robustness of Simultaneous Lesion and Neuroanatomy Segmentation in Multiple Sclerosis Using Deep Neural Networks. SSRN Electronic Journal, 0, , .	0.4	6
23	A Quantitative Imaging Biomarker Supporting Radiological Assessment of Hippocampal Sclerosis Derived From Deep Learning-Based Segmentation of T1w-MRI. Frontiers in Neurology, 2022, 13, 812432.	1.1	5
24	Canonical proof nets for classical logic. Annals of Pure and Applied Logic, 2013, 164, 702-732.	0.3	3
25	Soft Linear Set Theory. The Journal of Logic and Algebraic Programming, 2008, 76, 226-245.	1.4	2
26	Advanced MRI in acute stroke. Neurology, 2019, 92, 983-984.	1.5	2
27	Surface-Based Brain Morphometry for the Prediction of Fluid Intelligence in the Neurocognitive Prediction Challenge 2019. Lecture Notes in Computer Science, 2019, , 26-34.	1.0	1
28	Prediction of Tissue Damage Using a User-Independent Machine Learning Algorithm vs. Tmax Threshold Maps. Clinical and Translational Neuroscience, 2021, 5, 21.	0.4	0