Milena Lillina Sorrenti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1556724/publications.pdf

Version: 2024-02-01

80 papers

2,434 citations

236612 25 h-index 223531 46 g-index

81 all docs

81 docs citations

times ranked

81

3419 citing authors

#	Article	IF	CITATIONS
1	Ternary systems of terbinafine hydrochloride inclusion complexes. , 2022, , .		O
2	Native Cyclodextrins as Complexation Agents for Pterostilbene: Complex Preparation and Characterization in Solution and in the Solid State. Pharmaceutics, 2022, 14, 8.	2.0	8
3	An update on solid-state characterization of the polyphenol pterostilbene. Journal of Drug Delivery Science and Technology, 2022, 71, 103331.	1.4	1
4	Gellan-Based Composite System as a Potential Tool for the Treatment of Nervous Tissue Injuries: Cross-Linked Electrospun Nanofibers Embedded in a RC-33-Loaded Freeze-Dried Matrix. Pharmaceutics, 2021, 13, 164.	2.0	12
5	Equine Mesenchymal Stem/Stromal Cells Freeze-Dried Secretome (Lyosecretome) for the Treatment of Musculoskeletal Diseases: Production Process Validation and Batch Release Test for Clinical Use. Pharmaceuticals, 2021, 14, 553.	1.7	11
6	Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives?. Pharmaceutics, $2021, 13, 1180$.	2.0	13
7	Shape fidelity and sterility assessment of 3D printed polycaprolactone and hydroxyapatite scaffolds. Journal of Polymer Research, 2021, 28, 1.	1.2	4
8	Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics, 2021, 13, 1341.	2.0	20
9	Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible "EPR Effect Enhancer―to Improve Cancer Nanomedicine Efficacy. Cancers, 2021, 13, 4437.	1.7	17
10	Chitosan Oleate Coated PLGA Nanoparticles as siRNA Drug Delivery System. Pharmaceutics, 2021, 13, 1716.	2.0	11
11	Combination of inulin and \hat{l}^2 -cyclodextrin properties for colon delivery of hydrophobic drugs. International Journal of Pharmaceutics, 2020, 589, 119861.	2.6	14
12	Collagen/PCL Nanofibers Electrospun in Green Solvent by DOE Assisted Process. An Insight into Collagen Contribution. Materials, 2020, 13, 4698.	1.3	28
13	Inclusion of the Phytoalexin trans-Resveratrol in Native Cyclodextrins: A Thermal, Spectroscopic, and X-Ray Structural Study. Molecules, 2020, 25, 998.	1.7	12
14	Design of Experiments-Assisted Development of Clotrimazole-Loaded Ionic Polymeric Micelles Based on Hyaluronic Acid. Nanomaterials, 2020, 10, 635.	1.9	8
15	Polyphenols-Loaded Sericin Self-Assembling Nanoparticles: A Slow-Release for Regeneration by Tissue-Resident Mesenchymal Stem/Stromal Cells. Pharmaceutics, 2020, 12, 381.	2.0	15
16	Ecoâ€sustainable silk sericin from byâ€product of textile industry can be employed for cosmetic, dermatology and drug delivery. Journal of Chemical Technology and Biotechnology, 2020, 95, 2549-2560.	1.6	19
17	Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases. Pharmaceutics, 2020, 12, 1246.	2.0	15
18	Physico-chemical Characterisation of Silk-based Materials. , 2020, , 165-178.		0

#	Article	IF	CITATIONS
19	In Vitro and Ex Vivo Evaluation of Tablets Containing Piroxicam-Cyclodextrin Complexes for Buccal Delivery. Pharmaceutics, 2019, 11, 398.	2.0	12
20	Chitosan Oleate Coated Poly Lactic-Glycolic Acid (PLGA) Nanoparticles versus Chitosan Oleate Self-Assembled Polymeric Micelles, Loaded with Resveratrol. Marine Drugs, 2019, 17, 515.	2.2	19
21	Freeze-dried and GMP-compliant pharmaceuticals containing exosomes for acellular mesenchymal stromal cell immunomodulant therapy. Nanomedicine, 2019, 14, 753-765.	1.7	92
22	Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 37-45.	2.0	101
23	pH-sensitive inulin-based nanomicelles for intestinal site-specific and controlled release of celecoxib. Carbohydrate Polymers, 2018, 181, 570-578.	5.1	37
24	Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery. Soft Matter, 2018, 14, 546-557.	1.2	98
25	Acrylate-based poly-high internal phase emulsions for effective enzyme immobilization and activity retention: from computationally-assisted synthesis to pharmaceutical applications. Polymer Chemistry, 2018, 9, 87-97.	1.9	18
26	Chitosan Oleate Salt as an Amphiphilic Polymer for the Surface Modification of Poly-Lactic-Glycolic Acid (PLGA) Nanoparticles. Preliminary Studies of Mucoadhesion and Cell Interaction Properties. Marine Drugs, 2018, 16, 447.	2.2	9
27	Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells, 2018, 7, 190.	1.8	108
28	Identification of dual Sigma1 receptor modulators/acetylcholinesterase inhibitors with antioxidant and neurotrophic properties, as neuroprotective agents. European Journal of Medicinal Chemistry, 2018, 158, 353-370.	2.6	14
29	In vitro efficacy of silk sericin microparticles and platelet lysate for intervertebral disk regeneration. International Journal of Biological Macromolecules, 2018, 118, 792-799.	3.6	28
30	Human Engineered Cartilage and Decellularized Matrix as an Alternative to Animal Osteoarthritis Model. Polymers, 2018, 10, 738.	2.0	18
31	Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles. International Journal of Pharmaceutics, 2017, 520, 86-97.	2.6	75
32	Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents. Food Research International, 2017, 100, 780-790.	2.9	27
33	In Vitro Effectiveness of Microspheres Based on Silk Sericin and Chlorella vulgaris or Arthrospira platensis for Wound Healing Applications. Materials, 2017, 10, 983.	1.3	35
34	A dry powder formulation from silk fibroin microspheres as a topical auto-gelling device. Pharmaceutical Development and Technology, 2016, 21, 1-10.	1.1	23
35	Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses. Polymer Chemistry, 2016, 7, 7436-7445.	1.9	24
36	Controlled delivery systems for tissue repair and regeneration. Journal of Drug Delivery Science and Technology, 2016, 32, 206-228.	1.4	23

#	Article	IF	CITATIONS
37	Inclusion of <i>trans</i> -resveratrol in methylated cyclodextrins: synthesis and solid-state structures. Beilstein Journal of Organic Chemistry, 2014, 10, 3136-3151.	1.3	31
38	Inâ€Solution Structural Considerations by ¹ H NMR and Solidâ€State Thermal Properties of Inulinâ€ <scp>d</scp> â€Î±â€Tocopherol Succinate (INVITE) Micelles as Drug Delivery Systems for Hydrophobic Drugs. Macromolecular Chemistry and Physics, 2014, 215, 2084-2096.	1.1	26
39	Preliminary evaluation of packagingâ€content interactions: Mechanical and physicochemical characterization of polylactide bottles. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
40	Lisinopril Dihydrate: Single-Crystal X-Ray Structure and Physicochemical Characterization of Derived Solid Forms. Journal of Pharmaceutical Sciences, 2013, 102, 3596-3603.	1.6	18
41	Identification of RC-33 as a potent and selective $\ddot{l}f$ 1 receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Part 2: g-Scale synthesis, physicochemical characterization and in vitro metabolic stability. Bioorganic and Medicinal Chemistry, 2013, 21, 2577-2586.	1.4	37
42	Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 84-90.	2.0	88
43	Characterization of silver sulfadiazine-loaded solid lipid nanoparticles by thermal analysis. Journal of Thermal Analysis and Calorimetry, 2013, 111, 2149-2155.	2.0	19
44	Studies of Technological Parameters Influencing the Protein-Polymeric Nanoparticles Adsorption Process for Transmucosal Administration. Current Nanoscience, 2012, 8, 819-829.	0.7	2
45	Solid-state characterization of tacrine hydrochloride. Journal of Pharmaceutical and Biomedical Analysis, 2012, 63, 53-61.	1.4	16
46	Development of solid nanoparticles based on hydroxypropyl- <i>\hat{l}^2</i> -cyclodextrin aimed for the colonic transmucosal delivery of diclofenac sodium. Journal of Pharmacy and Pharmacology, 2011, 63, 472-482.	1.2	27
47	Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. European Journal of Pharmaceutical Sciences, 2011, 44, 559-565.	1.9	116
48	Physico-chemical characterization and dissolution properties of nifluminic acid-cyclodextrin-PVP ternary systems. Journal of Thermal Analysis and Calorimetry, 2011, 104, 291-297.	2.0	18
49	Novel mucoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. Journal of Pharmacy and Pharmacology, 2010, 61, 151-157.	1.2	44
50	Thermal characterization of diltiazem and î»-carrageenan binary systems. Journal of Thermal Analysis and Calorimetry, 2010, 102, 337-342.	2.0	4
51	Investigation of the thermal and structural behaviour of diclofenac sodium-sugar ester surfactant systems. Journal of Thermal Analysis and Calorimetry, 2009, 95, 885-890.	2.0	6
52	Novel mucoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. Journal of Pharmacy and Pharmacology, 2009, 61, 151-157.	1.2	23
53	Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. European Journal of Pharmaceutical Sciences, 2008, 35, 435-441.	1.9	187
54	Vancomycin–Triacetyl Cyclodextrin Interaction Products for Prolonged Drug Delivery. Pharmaceutical Development and Technology, 2008, 13, 65-73.	1.1	13

#	Article	IF	Citations
55	Effect of peracetylation on the conformation of $\hat{I}^3\text{-cyclodextrin}.$ Chemical Communications, 2007, , 1221-1223.	2.2	6
56	PHARMACEUTICS, PREFORMULATION ANDDRUG DELIVERY. Journal of Pharmaceutical Sciences, 2007, 96, 996-1007.	1.6	19
57	Solid-state interactions and drug release of teicoplanin in binary combinations with peracetylated \hat{l}_{\pm} -, \hat{l}^{2} -, and \hat{l}^{3} -cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 329-332.	1.6	4
58	Polymorphism, pseudopolymorphism, and amorphism of peracetylated \hat{l}_{\pm} , \hat{l}^{2} , and \hat{l}^{3} -cyclodextrins. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1205-1211.	1.4	19
59	Solid-state characterization and dissolution properties of Naproxen–Arginine–Hydroxypropyl-β-cyclodextrin ternary system. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 99-106.	2.0	83
60	Thermal studies of solvent exchange in isostructural solvates of a tetroxoprim-sulfametrole complex. Journal of Thermal Analysis and Calorimetry, 2004, 77, 695-708.	2.0	12
61	Study of the microstructure of o/w creams with thermal and rheological methods. Journal of Thermal Analysis and Calorimetry, 2003, 73, 623-632.	2.0	17
62	Orderâ€Disorder Enantiotropy, Monotropy, and Isostructurality in a Tetroxoprimâ€Sulfametrole 1:1 Molecular Complex: Crystallographic and Thermal Studies. Journal of Pharmaceutical Sciences, 2003, 92, 2164-2176.	1.6	9
63	Formulation and in vivo evaluation of chlorhexidine buccal tablets prepared using drug-loaded chitosan microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53, 233-239.	2.0	161
64	Interaction of naproxen with noncrystalline acetyl \hat{i}^2 - and acetyl \hat{i}^3 -cyclodextrins in the solid and liquid state. European Journal of Pharmaceutical Sciences, 2002, 15, 21-29.	1.9	31
65	Structural relationships, thermal properties, and physicochemical characterization of anhydrous and solvated crystalline forms of tetroxoprim. Journal of Pharmaceutical Sciences, 2002, 91, 467-481.	1.6	40
66	Assessment of solid-state interactions of naproxen with amorphous cyclodextrin derivatives by DSC. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30, 1173-1179.	1.4	24
67	Thermal and structural characterization of cyclomaltononaose (δ-cyclodextrin), cyclomaltodecaose (ε-cyclodextrin) and cyclomaltotetradecaose (ι-cyclodextrin). Thermochimica Acta, 2002, 385, 63-71.	1.2	13
68	Thermal And Structural Characterization of Commercial α-, β-, and γ-Cyclodextrins. Magyar Apróvad Közlemények, 2002, 68, 517-529.	1.4	32
69	Interaction of Naproxen with Crystalline and Amorphous Methylated \hat{l}^2 -Cyclodextrin in the Liquid and Solid State. Supramolecular Chemistry, 2001, 12, 379-389.	1.5	17
70	Structure and Solidâ€State Chemistry of Anhydrous and Hydrated Crystal forms of the Trimethoprimâ€Sulfamethoxypyridazine 1:1 Molecular Complex. , 2000, 89, 478-489.		53
71	Differential Scanning Calorimetry Analysis of Crystallinity Changes of Naproxen in Ground Mixtures with Maltohexaose, the Non Cyclic Analog of Alpha-Cyclodextrin. , 1999, , 367-370.		1
72	Physical characterization of picotamide monohydrate and anhydrous picotamide. Journal of Pharmaceutical Sciences, 1999, 88, 1133-1139.	1.6	18

#	Article	IF	CITATIONS
73	Interaction of naproxen with alpha-cyclodextrin and its noncyclic analog maltohexaose. Pharmaceutical Research, 1999, 16, 689-694.	1.7	26
74	Dissolution Rate and Thermal Properties of Naproxen in Mixtures with Amorphous or Crystalline Dimethyl Beta-Cyclodextrin., 1999,, 371-374.		1
75	Ambroxol Theophylline-7-acetate Salt Monohydrate. Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 407-410.	0.4	4
76	Interactions of ketoprofen and ibuprofen with \hat{l}^2 -cyclodextrins in solution and in the solid state. International Journal of Pharmaceutics, 1998, 166, 189-203.	2.6	166
77	Thermoanalytical characterization of pseudopolymorphs of sulphadimidine and sulphadimidine–trimethoprim molecular complexes. Thermochimica Acta, 1998, 321, 67-72.	1.2	6
78	DSC Study of Crystallinity Changes of Naproxen in Ground Mixtures with Linear Maltooligomers. Journal of Thermal Analysis and Calorimetry, 1998, 51, 993-1000.	2.0	4
79	Trimethoprim–Sulfadimidine 1:2 Molecular Complex Monohydrate. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 1295-1299.	0.4	11
80	Inclusion of pterostilbene in natural cyclodextrins: complex preparation and solid-state characterization. , 0 , , .		1