Renu Wadhwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1556169/publications.pdf

Version: 2024-02-01

272 papers 10,493 citations

56 h-index 49773 87 g-index

275 all docs

275 docs citations

275 times ranked 9052 citing authors

#	Article	IF	CITATIONS
1	Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. Journal of Biomolecular Structure and Dynamics, 2022, 40, 1-13.	2.0	128
2	COVID19-inhibitory activity of withanolides involves targeting of the host cell surface receptor ACE2: insights from computational and biochemical assays. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7885-7898.	2.0	14
3	Phosphatidylserine Exposed Lipid Bilayer Models for Understanding Cancer Cell Selectivity of Natural Compounds: A Molecular Dynamics Simulation Study. Membranes, 2022, 12, 64.	1.4	5
4	Computational Identification of BCR-ABL Oncogenic Signaling as a Candidate Target of Withaferin A and Withanone. Biomolecules, 2022, 12, 212.	1.8	5
5	A Low Dose Combination of Withaferin A and Caffeic Acid Phenethyl Ester Possesses Anti-Metastatic Potential In Vitro: Molecular Targets and Mechanisms. Cancers, 2022, 14, 787.	1.7	9
6	Molecular Insights into the Antistress Potentials of Brazilian Green Propolis Extract and Its Constituent Artepillin C. Molecules, 2022, 27, 80.	1.7	3
7	Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (M ^{pro}) of SARS-CoV-2 and inhibit its activity. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3842-3854.	2.0	111
8	Molecular dynamics simulations and experimental studies reveal differential permeability of withaferin-A and withanone across the model cell membrane. Scientific Reports, 2021, 11, 2352.	1.6	22
9	Computational Insights into the Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl Ester for Treatment of Aberrant-EGFR Driven Lung Cancers. Biomolecules, 2021, 11, 160.	1.8	12
10	Identification and Characterization of MortaparibPlus—A Novel Triazole Derivative That Targets Mortalin-p53 Interaction and Inhibits Cancer-Cell Proliferation by Wild-Type p53-Dependent and -Independent Mechanisms. Cancers, 2021, 13, 835.	1.7	14
11	Low Dose of Fluoride in the Culture Medium of Cordyceps militaris Promotes Its Growth and Enhances Bioactives with Antioxidant and Anticancer Properties. Journal of Fungi (Basel,) Tj ETQq1 1 0.784314 rg	gBI.‡Overl	ock 10 Tf 50
12	Withanolide Derivative 2,3-Dihydro-3 \hat{l}^2 -methoxy Withaferin-A Modulates the Circadian Clock via Interaction with RAR-Related Orphan Receptor \hat{l}_\pm (RORa). Journal of Natural Products, 2021, 84, 1882-1888.	1.5	6
13	Mutant p53L194F Harboring Luminal-A Breast Cancer Cells Are Refractory to Apoptosis and Cell Cycle Arrest in Response to MortaparibPlus, a Multimodal Small Molecule Inhibitor. Cancers, 2021, 13, 3043.	1.7	8
14	Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients, 2021, 13, 2528.	1.7	28
15	Molecular mechanism of anti-SARS-CoV2 activity of Ashwagandha-derived withanolides. International Journal of Biological Macromolecules, 2021, 184, 297-312.	3.6	30
16	Functional characterization of miR-708 microRNA in telomerase positive and negative human cancer cells. Scientific Reports, 2021, 11, 17052.	1.6	4
17	Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochemistry International, 2021, 149, 105124.	1.9	11
18	Why Ashwagandha for Healthy Ageing? Evidence from Cultured Human Cells. Healthy Ageing and Longevity, 2021, , 589-615.	0.2	1

#	Article	IF	CITATIONS
19	Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules, 2021, 11, 1454.	1.8	6
20	Computational and in vitro experimental analyses of the anti-COVID-19 potential of Mortaparib and MortaparibPlus. Bioscience Reports, 2021, 41, .	1.1	1
21	Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl ester as ATP-competitive inhibitors of BRAF: A bioinformatics study. Current Research in Structural Biology, 2021, 3, 301-311.	1.1	6
22	Caffeic acid phenethyl ester (CAPE) confers wild type p53 function in p53Y220C mutant: bioinformatics and experimental evidence. Discover Oncology, 2021, 12, 64.	0.8	6
23	Induction of Senescence in Cancer Cells by a Novel Combination of Cucurbitacin B and Withanone: Molecular Mechanism and Therapeutic Potential. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1031-1041.	1.7	30
24	Identification of Caffeic Acid Phenethyl Ester (CAPE) as a Potent Neurodifferentiating Natural Compound That Improves Cognitive and Physiological Functions in Animal Models of Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2020, 12, 561925.	1.7	10
25	Bioinformatics and Molecular Insights to Anti-Metastasis Activity of Triethylene Glycol Derivatives. International Journal of Molecular Sciences, 2020, 21, 5463.	1.8	5
26	Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes. Nature Communications, 2020, 11, 4117.	5.8	30
27	Novel role of mortalin in attenuating HIV-1 Tat-mediated astrogliosis. Journal of Neuroinflammation, 2020, 17, 276.	3.1	9
28	Novel Caffeic Acid Phenethyl Ester-Mortalin Antibody Nanoparticles Offer Enhanced Selective Cytotoxicity to Cancer Cells. Cancers, 2020, 12, 2370.	1.7	20
29	Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action. Cancers, 2020, 12, 1160.	1.7	32
30	Anti-Stress, Glial- and Neuro-Differentiation Potential of Resveratrol: Characterization by Cellular, Biochemical and Imaging Assays. Nutrients, 2020, 12, 671.	1.7	6
31	Stress-induced changes in CARF expression determine cell fate to death, survival, or malignant transformation. Cell Stress and Chaperones, 2020, 25, 481-494.	1.2	11
32	Soyasapogenol-A targets CARF and results in suppression of tumor growth and metastasis in p53 compromised cancer cells. Scientific Reports, 2020, 10, 6323.	1.6	22
33	Folic Acid Receptor-Mediated Targeting Enhances the Cytotoxicity, Efficacy, and Selectivity of Withania somnifera Leaf Extract: In vitro and in vivo Evidence. Frontiers in Oncology, 2019, 9, 602.	1.3	27
34	M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. Scientific Reports, 2019, 9, 13990.	1.6	32
35	Express ELISA for detection of mortalin. BioTechniques, 2019, 67, 166-171.	0.8	2
36	Marine Carotenoid Fucoxanthin Possesses Anti-Metastasis Activity: Molecular Evidence. Marine Drugs, 2019, 17, 338.	2.2	34

#	Article	IF	Citations
37	Modulation of Diacylglycerol-Induced Melanogenesis in Human Melanoma and Primary Melanocytes: Role of Stress Chaperone Mortalin. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	0.5	1
38	Wild type p53 function in p53Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence. Journal of Experimental and Clinical Cancer Research, 2019, 38, 103.	3.5	24
39	Rat Glioma Cell-Based Functional Characterization of Anti-Stress and Protein Deaggregation Activities in the Marine Carotenoids, Astaxanthin and Fucoxanthin. Marine Drugs, 2019, 17, 189.	2.2	19
40	TASO728, A Covalent-binding, HER2-selective Kinase Inhibitor Shows Potent Antitumor Activity in Preclinical Models. Molecular Cancer Therapeutics, 2019, 18, 733-742.	1.9	9
41	2, 3-Dihydro-3β-methoxy Withaferin-A Lacks Anti-Metastasis Potency: Bioinformatics and Experimental Evidences. Scientific Reports, 2019, 9, 17344.	1.6	18
42	Mortaparib, a novel dual inhibitor of mortalin and PARP1, is a potential drug candidate for ovarian and cervical cancers. Journal of Experimental and Clinical Cancer Research, 2019, 38, 499.	3.5	20
43	Molecular Insights Into Withaferin-A-Induced Senescence: Bioinformatics and Experimental Evidence to the Role of NFÎB and CARF. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 183-191.	1.7	13
44	CARF: A Stress, Senescence, and Cancer Regulator. , 2019, , .		0
45	Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review). International Journal of Oncology, 2018, 52, 19-37.	1.4	40
46	Anticancer Activity in Honeybee Propolis: Functional Insights to the Role of Caffeic Acid Phenethyl Ester and Its Complex With \hat{I}^3 -Cyclodextrin. Integrative Cancer Therapies, 2018, 17, 867-873.	0.8	45
47	Bioactivities in the tamarind seed extracts: A preliminary study. AIP Conference Proceedings, 2018, , .	0.3	2
48	Tumor suppressor activity of miR-451: Identification of CARF as a new target. Scientific Reports, 2018, 8, 375.	1.6	22
49	Identification and Functional Characterization of Anti-metastasis and Anti-angiogenic Activities of Triethylene Glycol Derivatives. Frontiers in Oncology, 2018, 8, 552.	1.3	6
50	Anti-Stress and Glial Differentiation Effects of a Novel Combination of Cucurbitacin B and Withanone (CucWi-N): Experimental Evidence. Annals of Neurosciences, 2018, 25, 201-209.	0.9	8
51	Anticancer activity of the supercritical extract of Brazilian green propolis and its active component, artepillinà Â $_2$ Â $_2$ C: Bioinformatics and experimental analyses of its mechanisms of action. International Journal of Oncology, 2018, 52, 925-932.	1.4	34
52	Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost. PLoS ONE, 2018, 13, e0194314.	1.1	19
53	TAS6417, A Novel EGFR Inhibitor Targeting Exon 20 Insertion Mutations. Molecular Cancer Therapeutics, 2018, 17, 1648-1658.	1.9	64
54	CARF enrichment promotes epithelial $\hat{a}\in$ "mesenchymal transition via Wnt \hat{l}^2 -catenin signaling: its clinical relevance and potential as a therapeutic target. Oncogenesis, 2018, 7, 39.	2.1	30

#	Article	IF	Citations
55	Caffeic acid phenethyl ester (CAPE) possesses pro-hypoxia and anti-stress activities: bioinformatics and experimental evidences. Cell Stress and Chaperones, 2018, 23, 1055-1068.	1.2	10
56	Molecular dynamics-based identification of novel natural mortalin–p53 abrogators as anticancer agents. Journal of Receptor and Signal Transduction Research, 2017, 37, 8-16.	1.3	8
57	Relevance of mortalin to cancer cell stemness and cancer therapy. Scientific Reports, 2017, 7, 42016.	1.6	58
58	Withaferin-A kills cancer cells with and without telomerase: chemical, computational and experimental evidences. Cell Death and Disease, 2017, 8, e2755-e2755.	2.7	41
59	Mortalin deficiency suppresses fibrosis and induces apoptosis in keloid spheroids. Scientific Reports, 2017, 7, 12957.	1.6	12
60	2,3-Dihydro-3β-methoxy Withaferin-A Protects Normal Cells against Stress: Molecular Evidence of Its Potent Cytoprotective Activity. Journal of Natural Products, 2017, 80, 2756-2760.	1.5	15
61	Ashwagandha for Cancer Metastasis: Bioactives and Basics of Their Function., 2017,, 243-262.		0
62	Ashwagandha for Brain Health: Experimental Evidence for Its Neuroregenerative Activities. , 2017, , 283-304.		1
63	Ashwagandha Bioactives for Cancer Treatment: Experimental Evidence and Their Mechanism(s) of Action. , 2017, , 149-174.		2
64	Withaferin-A as a Potential Candidate for Cancer Therapy: Experimental Evidence of Its Effects on Telomerase Plus and Minus Cancer Cells., 2017,, 197-212.		0
65	Establishment of Hydroponic Cultivation of Ashwagandha for Active Ingredient Enriched Leaves., 2017,, 495-508.		2
66	Induction of senescence in cancer cells by $5\hat{a}\in^2$ -Aza- $2\hat{a}\in^2$ -deoxycytidine: Bioinformatics and experimental insights to its targets. Computational Biology and Chemistry, 2017, 70, 49-55.	1,1	17
67	CARF is a multi-module regulator of cell proliferation and a molecular bridge between cellular senescence and carcinogenesis. Mechanisms of Ageing and Development, 2017, 166, 64-68.	2.2	15
68	Addressing Challenges to Enhance the Bioactives of <i>Withania somnifera </i> through Organ, Tissue, and Cell Culture Based Approaches. BioMed Research International, 2017, 2017, 1-15.	0.9	16
69	Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction. PLoS ONE, 2017, 12, e0172508.	1.1	30
70	Molecular Characterization and Enhancement of Anticancer Activity of Caffeic Acid Phenethyl Ester by \hat{I}^3 Cyclodextrin. Journal of Cancer, 2016, 7, 1755-1771.	1.2	65
71	Assessment of Cholinergic Properties of <i>Ashwagandha</i> Leaf-Extract in the Amnesic Mouse Brain. Annals of Neurosciences, 2016, 23, 68-75.	0.9	12
72	Loss-of-function screening to identify miRNAs involved in senescence: tumor suppressor activity of miRNA-335 and its new target CARF. Scientific Reports, 2016, 6, 30185.	1.6	17

#	Article	IF	Citations
73	Cell Cycle Checkpoints and Senescence. Healthy Ageing and Longevity, 2016, , 145-167.	0.2	1
74	Stress chaperone mortalin regulates human melanogenesis. Cell Stress and Chaperones, 2016, 21, 631-644.	1.2	14
75	Fate of bone marrow mesenchymal stromal cells following autologous transplantation in a rabbit model of osteonecrosis. Cytotherapy, 2016, 18, 198-204.	0.3	15
76	Stress Chaperone Mortalin Contributes to Epithelial-to-Mesenchymal Transition and Cancer Metastasis. Cancer Research, 2016, 76, 2754-2765.	0.4	93
77	Nootropic potential of Ashwagandha leaves: Beyond traditional root extracts. Neurochemistry International, 2016, 95, 109-118.	1.9	37
78	Functional Characterisation of Anticancer Activity in the Aqueous Extract of Helicteres angustifolia L. Roots. PLoS ONE, 2016, 11, e0152017.	1.1	14
79	Novel Methods to Generate Active Ingredients-Enriched Ashwagandha Leaves and Extracts. PLoS ONE, 2016, 11, e0166945.	1.1	29
80	A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)., 2015,,.		0
81	Combinations of Ashwagandha Leaf Extracts Protect Brain-Derived Cells against Oxidative Stress and Induce Differentiation. PLoS ONE, 2015, 10, e0120554.	1.1	43
82	Serum-free isolation and culture system to enhance the proliferation and bone regeneration of adipose tissue-derived mesenchymal stem cells. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 515-529.	0.7	13
83	Circulating mortalin autoantibody—a new serological marker of liver cirrhosis. Cell Stress and Chaperones, 2015, 20, 715-719.	1.2	7
84	Functional Significance of Point Mutations in Stress Chaperone Mortalin and Their Relevance to Parkinson Disease. Journal of Biological Chemistry, 2015, 290, 8447-8456.	1.6	41
85	Biotechnological interventions in <i>Withania somnifera</i> L.) Dunal. Biotechnology and Genetic Engineering Reviews, 2015, 31, 1-20.	2.4	41
86	CARF (Collaborator of ARF) overexpression in p53â€deficient cells promotes carcinogenesis. Molecular Oncology, 2015, 9, 1877-1889.	2.1	27
87	Targeting of DNA Damage Signaling Pathway Induced Senescence and Reduced Migration of Cancer cells. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 701-713.	1.7	16
88	Evaluation and Selection of Candidate Reference Genes for Normalization of Quantitative RT-PCR in Withania somnifera (L.) Dunal. PLoS ONE, 2015, 10, e0118860.	1.1	22
89	Targeting Mortalin by Embelin Causes Activation of Tumor Suppressor p53 and Deactivation of Metastatic Signaling in Human Breast Cancer Cells. PLoS ONE, 2015, 10, e0138192.	1.1	36
90	Collaborator of ARF (CARF) Regulates Proliferative Fate of Human Cells by Dose-dependent Regulation of DNA Damage Signaling. Journal of Biological Chemistry, 2014, 289, 18258-18269.	1.6	35

#	Article	IF	Citations
91	Identification and Functional Characterization of Nuclear Mortalin in Human Carcinogenesis. Journal of Biological Chemistry, 2014, 289, 24832-24844.	1.6	53
92	Embelin inhibits TNF- $\hat{l}\pm$ converting enzyme and cancer cell metastasis: molecular dynamics and experimental evidence. BMC Cancer, 2014, 14, 775.	1.1	26
93	Molecular characterization of collaborator of ARF (CARF) as a DNA damage response and cell cycle checkpoint regulatory protein. Experimental Cell Research, 2014, 322, 324-334.	1.2	25
94	Withanone-Rich Combination of Ashwagandha Withanolides Restricts Metastasis and Angiogenesis through hnRNP-K. Molecular Cancer Therapeutics, 2014, 13, 2930-2940.	1.9	65
95	Involvement of hippocampal Arc in amnesia and its recovery by alcoholic extract of Ashwagandha leaves. Neurobiology of Learning and Memory, 2013, 106, 177-184.	1.0	44
96	Mortalin antibody-conjugated quantum dot transfer from human mesenchymal stromal cells to breast cancer cells requires cell–cell interaction. Experimental Cell Research, 2013, 319, 2770-2780.	1.2	17
97	Withania somnifera Water Extract as a Potential Candidate for Differentiation Based Therapy of Human Neuroblastomas. PLoS ONE, 2013, 8, e55316.	1.1	28
98	Intracellular distribution of human <scp>SIRT</scp> 7 and mapping of the nuclear/nucleolar localization signal. FEBS Journal, 2013, 280, 3451-3466.	2.2	96
99	Molecular interactions of Bcl-2 and Bcl-xL with mortalin: identification and functional characterization. Bioscience Reports, 2013, 33, .	1.1	23
100	Heterogeneous Nuclear Ribonucleoprotein K (hnRNP-K) Promotes Tumor Metastasis by Induction of Genes Involved in Extracellular Matrix, Cell Movement, and Angiogenesis. Journal of Biological Chemistry, 2013, 288, 15046-15056.	1.6	85
101	Druggability of Mortalin for Cancer and Neuro-Degenerative Disorders. Current Pharmaceutical Design, 2013, 19, 418-429.	0.9	29
102	Water Extract of Ashwagandha Leaves Has Anticancer Activity: Identification of an Active Component and Its Mechanism of Action. PLoS ONE, 2013, 8, e77189.	1.1	61
103	CARF Regulates Cellular Senescence and Apoptosis through p53-Dependent and -Independent Pathways. , 2013, , 137-157.		0
104	Druggability of mortalin for cancer and neuro-degenerative disorders. Current Pharmaceutical Design, 2013, 19, 418-29.	0.9	16
105	Withanone binds to mortalin and abrogates mortalin–p53 complex: Computational and experimental evidence. International Journal of Biochemistry and Cell Biology, 2012, 44, 496-504.	1.2	56
106	Water Extract from the Leaves of Withania somnifera Protect RA Differentiated C6 and IMR-32 Cells against Glutamate-Induced Excitotoxicity. PLoS ONE, 2012, 7, e37080.	1.1	65
107	Differential Activities of the Two Closely Related Withanolides, Withaferin A and Withanone: Bioinformatics and Experimental Evidences. PLoS ONE, 2012, 7, e44419.	1.1	92
108	Birth of Mortalin: Multiple Names, Niches and Functions Connecting Stress, Senescence and Cancer. , 2012, , 3-20.		1

7

#	Article	IF	Citations
109	Mortalin-p53 Interaction as a Target for Liver Cancer Therapy. , 2012, , 267-278.		1
110	Mortalin Staining Pattern as a Reporter for Cell Based Anti-Cancer Drug Screening., 2012, , 307-322.		2
111	Ashwagandha Derived Withanone Targets TPX2-Aurora A Complex: Computational and Experimental Evidence to its Anticancer Activity. PLoS ONE, 2012, 7, e30890.	1.1	41
112	Mortalin Targeting Gadgets for Cancer Therapy. , 2012, , 279-291.		0
113	Cell Internalizing Anti-Mortalin Antibody for Generation of Illuminating MSCs for Long-Term In vitro and In vivo Tracking. , 2012, , 295-305.		0
114	Consequences of Altered Mortalin Expression in Control of Cell Proliferation and Brain Function., 2012, , 95-109.		0
115	Cell Internalizing Anti-mortalin Antibody as a Nanocarrier. , 2012, , 323-335.		0
116	Mortalin's Machinery. , 2012, , 21-30.		2
117	Druggability of Mortalin for Cancer and Neuro-Degenerative Disorders. Current Pharmaceutical Design, 2012, 19, 418-429.	0.9	17
118	Ashwagandha Leaf Derived Withanone Protects Normal Human Cells Against the Toxicity of Methoxyacetic Acid, a Major Industrial Metabolite. PLoS ONE, 2011, 6, e19552.	1.1	34
119	Ashwagandha leaf extract and its components for brain derived cells: Protection against oxidative stress and induction of differentiation. Neuroscience Research, 2011, 71, e233.	1.0	0
120	676 MORTALIN-P53 INTERACTION IN CANCER CELLS IS STRESS DEPENDENT AND CONSTITUTES A NOVEL TARGET FOR LIVER CANCER THERAPY. Journal of Hepatology, 2011, 54, S272.	1.8	0
121	Molecular characterization of apoptosis induced by CARF silencing in human cancer cells. Cell Death and Differentiation, 2011, 18, 589-601.	5.0	25
122	Mortalin–p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death and Differentiation, 2011, 18, 1046-1056.	5.0	143
123	Fate of bone marrow mesenchymal stem cells following the allogeneic transplantation of cartilaginous aggregates into osteochondral defects of rabbits. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 437-443.	1.3	21
124	Induction of mutant p53â€dependent apoptosis in human hepatocellular carcinoma by targeting stress protein mortalin. International Journal of Cancer, 2011, 129, 1806-1814.	2.3	65
125	MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3' untranslated region. Nucleic Acids Research, 2011, 39, 8078-8091.	6. 5	42
126	Water Extract of Ashwagandha Leaves Limits Proliferation and Migration, and Induces Differentiation in Glioma Cells. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-12.	0.5	33

#	Article	IF	CITATIONS
127	Protective Role of Ashwagandha Leaf Extract and Its Component Withanone on Scopolamine-Induced Changes in the Brain and Brain-Derived Cells. PLoS ONE, 2011, 6, e27265.	1.1	154
128	Protection from aging by small chaperones. Annals of the New York Academy of Sciences, 2010, 1197, 67-75.	1.8	6
129	Tumor suppression by apoptotic and antiâ€angiogenic effects of mortalinâ€targeting adenoâ€oncolytic virus. Journal of Gene Medicine, 2010, 12, 586-595.	1.4	46
130	Molecular bridging of aging and cancer. Annals of the New York Academy of Sciences, 2010, 1197, 129-133.	1.8	15
131	Selective Killing of Cancer Cells by Ashwagandha Leaf Extract and Its Component Withanone Involves ROS Signaling. PLoS ONE, 2010, 5, e13536.	1.1	124
132	Expression of Noncoding Vault RNA in Human Malignant Cells and Its Importance in Mitoxantrone Resistance. Molecular Cancer Research, 2010, 8, 1536-1546.	1.5	55
133	Proproliferative Functions of Drosophila Small Mitochondrial Heat Shock Protein 22 in Human Cells. Journal of Biological Chemistry, 2010, 285, 3833-3839.	1.6	27
134	CARF Is a Vital Dual Regulator of Cellular Senescence and Apoptosis. Journal of Biological Chemistry, 2009, 284, 1664-1672.	1.6	39
135	Deceleration of Senescence in Normal Human Fibroblasts by Withanone Extracted From Ashwagandha Leaves. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 1031-1038.	1.7	29
136	Cell cycle checkpoint defects contribute to genomic instability in PTEN deficient cells independent of DNA DSB repair. Cell Cycle, 2009, 8, 2198-2210.	1.3	107
137	CARF: An emerging regulator of p53 tumor suppressor and senescence pathway. Mechanisms of Ageing and Development, 2009, 130, 18-23.	2.2	20
138	Regulation of perforin lysis: Implications for protein disulfide isomerase proteins. Cellular Immunology, 2009, 255, 82-92.	1.4	5
139	Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: Combinational approach for enhanced differentiation. Cancer Science, 2009, 100, 1740-1747.	1.7	87
140	Improvement of Targeted Gene Delivery to Human Cancer Cells by a Novel Trifunctional Crosslinker. Chemistry - an Asian Journal, 2009, 4, 1318-1322.	1.7	2
141	Stable and Nondisruptive <i>In Vitro</i> /i>/ <i>In Vivo</i> /i> Labeling of Mesenchymal Stem Cells by Internalizing Quantum Dots. Human Gene Therapy, 2009, 20, 217-224.	1.4	39
142	The Versatile Stress Protein Mortalin as a Chaperone Therapeutic Agent. Protein and Peptide Letters, 2009, 16, 517-529.	0.4	30
143	Glycerol stimulates innate chaperoning, proteasomal and stress-resistance functions: implications for geronto-manipulation. Biogerontology, 2008, 9, 269-282.	2.0	14
144	From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology, 2008, 9, 391-403.	2.0	43

#	Article	IF	Citations
145	Editorial: Special issue of Biogerontology on brain aging. Biogerontology, 2008, 9, 367-368.	2.0	O
146	Merger of Ayurveda and Tissue Culture-Based Functional Genomics: Inspirations from Systems Biology. Journal of Translational Medicine, 2008, 6, 14.	1.8	42
147	Selective killing of cancer cells by leaf extract of Ashwagandha: Components, activity and pathway analyses. Cancer Letters, 2008, 262, 37-47.	3.2	77
148	CARF (collaborator of ARF) interacts with HDM2: Evidence for a novel regulatory feedback regulation of CARF-p53-HDM2-p21WAF1 pathway. International Journal of Oncology, 2008, , .	1.4	9
149	Stable and Non-Disruptive In Vitro/In Vivo Labeling of Mesenchymal Stem Cells by Internalizing Quantum Dots. Human Gene Therapy, 2008, .	1.4	0
150	CARF (collaborator of ARF) interacts with HDM2: evidence for a novel regulatory feedback regulation of CARF-p53-HDM2-p21WAF1 pathway. International Journal of Oncology, 2008, 32, 663-71.	1.4	12
151	Disruption of Telomere Maintenance by Depletion of the MRE11/RAD50/NBS1 Complex in Cells That Use Alternative Lengthening of Telomeres. Journal of Biological Chemistry, 2007, 282, 29314-29322.	1.6	133
152	Loss-of-function screening by randomized intracellular antibodies: Identification of hnRNP-K as a potential target for metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8983-8988.	3.3	75
153	Selective Killing of Cancer Cells by Leaf Extract of Ashwagandha: Identification of a Tumor-Inhibitory Factor and the First Molecular Insights to Its Effect. Clinical Cancer Research, 2007, 13, 2298-2306.	3.2	160
154	Stress Chaperones, Mortalin, and Pex19p Mediate 5-Aza-2' Deoxycytidine-Induced Senescence of Cancer Cells by DNA Methylation-Independent Pathway. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 246-255.	1.7	29
155	Mortalin sensitizes human cancer cells to MKT-077-induced senescence. Cancer Letters, 2007, 252, 259-269.	3.2	79
156	Heat shock chaperone mortalin and carcinogenesis. , 2007, , 141-158.		3
157	An antibody-conjugated internalizing quantum dot suitable for long-term live imaging of cells. Biochemistry and Cell Biology, 2007, 85, 133-140.	0.9	28
158	Internalizing Antibody-Based Targeted Gene Delivery for Human Cancer Cells. Human Gene Therapy, 2007, 18, 1153-1160.	1.4	21
159	Three faces of mortalin: A housekeeper, guardian and killer. Experimental Gerontology, 2007, 42, 263-274.	1.2	217
160	Involvement of Mortalin in Cellular Senescence from the Perspective of its Mitochondrial Import, Chaperone, and Oxidative Stress Management Functions. Annals of the New York Academy of Sciences, 2007, 1100, 306-311.	1.8	50
161	CARF Binds to Three Members (ARF, p53, and HDM2) of the p53 Tumor-Suppressor Pathway. Annals of the New York Academy of Sciences, 2007, 1100, 312-315.	1.8	13
162	Quantum Dot-Based Mortalin Staining as a Visual Assay for Detection of Induced Senescence in Cancer Cells. Annals of the New York Academy of Sciences, 2007, 1100, 368-372.	1.8	9

#	Article	IF	CITATIONS
163	Functional Significance of Minor Structural and Expression Changes in Stress Chaperone Mortalin. Annals of the New York Academy of Sciences, 2007, 1119, 165-175.	1.8	28
164	Use of Ribozymes in Cellular Aging Research. Methods in Molecular Biology, 2007, 371, 209-226.	0.4	1
165	Evidence for Differential Structure and Function of Hsp70 Family Members, Mot-1 and Mot-2, in Control of Cellular Senescence. Annals of the New York Academy of Sciences, 2006, 928, 357-357.	1.8	0
166	CARF Regulates p19ARF-p53-p21WAF1 Senescence Pathway by Multiple Checkpoints. Annals of the New York Academy of Sciences, 2006, 1067, 217-219.	1.8	7
167	Structural and Functional Differences between Mouse Mot-1 and Mot-2 Proteins That Differ in Two Amino Acids. Annals of the New York Academy of Sciences, 2006, 1067, 220-223.	1.8	11
168	Preincubation with the Proteasome Inhibitor MG-132 Enhances Proteasome Activity via the Nrf2 Transcription Factor in Aging Human Skin Fibroblasts. Annals of the New York Academy of Sciences, 2006, 1067, 420-424.	1.8	35
169	Quantum Dot-Based Protein Imaging and Functional Significance of Two Mitochondrial Chaperones in Cellular Senescence and Carcinogenesis. Annals of the New York Academy of Sciences, 2006, 1067, 469-473.	1.8	27
170	Geroprotection by Glycerol: Insights to Its Mechanisms and Clinical Potentials. Annals of the New York Academy of Sciences, 2006, 1067, 488-492.	1.8	13
171	Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. International Journal of Cancer, 2006, 118, 2973-2980.	2.3	214
172	Proteomic Identification of a Stress Protein, Mortalin/mthsp70/GRP75. Molecular and Cellular Proteomics, 2006, 5, 1193-1204.	2.5	220
173	On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress and Chaperones, 2006, 11, 116.	1.2	163
174	Identification of metastasis-related genes in a mouse model using a library of randomized ribozymes. VOLUME 279 (2004) PAGES 38083-38086. Journal of Biological Chemistry, 2006, 281, 18264.	1.6	1
175	Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochemical Journal, 2005, 391, 185-190.	1.7	89
176	Imminent approaches towards molecular interventions in ageing. Mechanisms of Ageing and Development, 2005, 126, 481-490.	2.2	6
177	Activation of Wild Type p53 Function by Its Mortalin-binding, Cytoplasmically Localizing Carboxyl Terminus Peptides. Journal of Biological Chemistry, 2005, 280, 39373-39379.	1.6	120
178	Quantum dots in bio-imaging: Revolution by the small. Biochemical and Biophysical Research Communications, 2005, 329, 1173-1177.	1.0	140
179	Evaluation of the anti-genotoxicity of leaf extract of Ashwagandha. Food and Chemical Toxicology, 2005, 43, 95-98.	1.8	23
180	Mimotope-hormesis and mortalin/grp75/mthsp70: a new hypothesis on how infectious disease-associated epitope mimicry may explain low cancer burden in developing nations. FEBS Letters, 2005, 579, 586-590.	1.3	9

#	Article	IF	Citations
181	Identification of Metastasis-related Genes in a Mouse Model Using a Library of Randomized Ribozymes. Journal of Biological Chemistry, 2004, 279, 38083-38086.	1.6	45
182	Use of a Randomized Hybrid Ribozyme Library for Identification of Genes Involved in Muscle Differentiation. Journal of Biological Chemistry, 2004, 279, 51622-51629.	1.6	18
183	World of small RNAs: from ribozymes to siRNA and miRNA. Differentiation, 2004, 72, 58-64.	1.0	38
184	Cell migration and metastasis as targets of small RNA-based molecular genetic analyses. Journal of Muscle Research and Cell Motility, 2004, 25, 303-308.	0.9	6
185	LIM kinase-2 targeting as a possible anti-metastasis therapy. Journal of Gene Medicine, 2004, 6, 357-363.	1.4	37
186	Reduction in mortalin level by its antisense expression causes senescence-like growth arrest in human immortalized cells. Journal of Gene Medicine, 2004, 6, 439-444.	1.4	70
187	Dose and Dose-Rate Effects of Low-Dose Ionizing Radiation on Activation of Trp53 in Immortalized Murine Cells. Radiation Research, 2004, 162, 296-307.	0.7	38
188	Emerging Technologies: Trendy RNA Tools for Aging Research. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B771-B783.	1.7	7
189	Evaluation of the anti-proliferative and anti-oxidative activities of leaf extract from in vivo and in vitro raised Ashwagandha. Food and Chemical Toxicology, 2004, 42, 2015-2020.	1.8	38
190	Know-how of RNA interference and its applications in research and therapy. Mutation Research - Reviews in Mutation Research, 2004, 567, 71-84.	2.4	36
191	Alternative reading frame protein (ARF)-independent function of CARF (collaborator of ARF) involves its interactions with p53: evidence for a novel p53-activation pathway and its negative feedback control. Biochemical Journal, 2004, 380, 605-610.	1.7	39
192	Vectors for RNA interference. Current Opinion in Molecular Therapeutics, 2004, 6, 367-72.	2.8	21
193	A novel putative collaborator of p19ARF. Experimental Gerontology, 2003, 38, 245-252.	1.2	15
194	Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Research, 2003, 13, 503-507.	5.7	118
195	Targeting mortalin using conventional and RNAâ€helicaseâ€coupled hammerhead ribozymes. EMBO Reports, 2003, 4, 595-601.	2.0	57
196	Mortalin–MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochemical and Biophysical Research Communications, 2003, 302, 735-742.	1.0	71
197	Overexpressed mortalin (mot-2)/mthsp70/GRP75 and hTERT cooperate to extend the in vitro lifespan of human fibroblasts. Experimental Cell Research, 2003, 286, 96-101.	1,2	93
198	Limited capacity of the nuclear matrix to bind telomere repeat binding factor TRF1 may restrict the proliferation of mortal human fibroblasts. Human Molecular Genetics, 2003, 13, 285-293.	1.4	14

#	Article	IF	Citations
199	Escaping Cellular Senescence In Vitro. , 2003, , 85-99.		1
200	Cellular Senescence Pathways in Mouse and Human. , 2003, , 225-238.		1
201	Use of Hammerhead Ribozymes for Aging and Cancer. , 2003, , 257-267.		0
202	A Major Functional Difference between the Mouse and Human ARF Tumor Suppressor Proteins. Journal of Biological Chemistry, 2002, 277, 36665-36670.	1.6	29
203	Ski is involved in transcriptional regulation by the repressor and full-length forms of Gli3. Genes and Development, 2002, 16, 2843-2848.	2.7	76
204	CARF Is a Novel Protein That Cooperates with Mouse p19 (Human p14) in Activating p53. Journal of Biological Chemistry, 2002, 277, 37765-37770.	1.6	58
205	An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where?. Cell Stress and Chaperones, 2002, 7, 309.	1.2	242
206	Hsp70 Family Member, mot-2/mthsp70/GRP75, Binds to the Cytoplasmic Sequestration Domain of the p53 Protein. Experimental Cell Research, 2002, 274, 246-253.	1.2	162
207	Extended longevity of Caenorhabditis elegansby knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Letters, 2002, 516, 53-57.	1.3	206
208	Mortalin: present and prospective. Experimental Gerontology, 2002, 37, 1157-1164.	1.2	87
209	Rhodacyanine dye MKT-077 inhibits in vitro telomerase assay but has no detectable effects on telomerase activity in vivo. Cancer Research, 2002, 62, 4434-8.	0.4	21
210	Cell-Cycle Dependent Tyrosine Phosphorylation on Mortalin Regulates Its Interaction with Fibroblast Growth Factor-1. Biochemical and Biophysical Research Communications, 2001, 280, 1203-1209.	1.0	50
211	Characterization of a Novel Zinc Finger Gene with Increased Expression in Nondividing Normal Human Cells. Experimental Cell Research, 2001, 263, 156-162.	1.2	8
212	Role of PML and PML-RARα in Mad-Mediated Transcriptional Repression. Molecular Cell, 2001, 7, 1233-1243.	4.5	137
213	An N-terminal Region of Mot-2 Binds to p53 In Vitro. Neoplasia, 2001, 3, 110-114.	2.3	62
214	Identification and characterization of molecular interactions between glucose-regulated proteins (GRPs) mortalin/GRP75/peptide-binding protein 74 (PBP74) and GRP94. Biochemical Journal, 2001, 357, 393.	1.7	38
215	Identification and characterization of molecular interactions between glucose-regulated proteins (GRPs) mortalin/GRP75/peptide-binding protein 74 (PBP74) and GRP94. Biochemical Journal, 2001, 357, 393-398.	1.7	46
216	p53-independent upregulation of p21WAF1 in NIH 3T3 cells malignantly transformed by mot-2. Cell Research, 2001, 11, 55-60.	5.7	5

#	Article	IF	Citations
217	Pex19p Dampens the p19ARF-p53-p21WAF1 Tumor Suppressor Pathway*. Journal of Biological Chemistry, 2001, 276, 18649-18652.	1.6	41
218	The Ski Protein Family Is Required for MeCP2-mediated Transcriptional Repression. Journal of Biological Chemistry, 2001, 276, 34115-34121.	1.6	191
219	PML-RARα Alleviates the Transcriptional Repression Mediated by Tumor Suppressor Rb. Journal of Biological Chemistry, 2001, 276, 43491-43494.	1.6	41
220	Gros1, a potential growth suppressor on chromosome 1: its identity to basement membrane-associated proteoglycan, leprecan. Oncogene, 2000, 19, 3576-3583.	2.6	34
221	Senescence and immortalization of human cells. Biogerontology, 2000, 1, 103-121.	2.0	40
222	Structurally and Functionally Distinct Mouse Hsp70 Family Members Mot-1 and Mot-2 Proteins are Encoded by Two Alleles. DNA Research, 2000, 7, 229-231.	1.5	25
223	Extramitochondrial Localization of Mortalin/mthsp70/PBP74/GRP75. Biochemical and Biophysical Research Communications, 2000, 275, 174-179.	1.0	179
224	Transcriptional Inactivation of p53 by Deletions and Single Amino Acid Changes in Mouse mot-1 Protein. Biochemical and Biophysical Research Communications, 2000, 279, 602-606.	1.0	16
225	Inactivation of p53 and life span extension of human diploid fibroblasts by mot-2. FEBS Letters, 2000, 474, 159-164.	1.3	73
226	GROWTH SUPPRESSION OF HUMAN TRANSFORMED CELLS BY TREATMENT WITH BARK EXTRACTS FROM A MEDICINAL PLANT, TERMINALIA ARJUNA. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 544.	0.7	18
227	Cloning and Characterization of a Novel Gene, striamin, That Interacts with the Tumor Suppressor Protein p53. Journal of Biological Chemistry, 1999, 274, 14948-14955.	1.6	5
228	Viral Ski Inhibits Retinoblastoma Protein (Rb)-mediated Transcriptional Repression in a Dominant Negative Fashion. Journal of Biological Chemistry, 1999, 274, 4485-4488.	1.6	80
229	NIH 3T3 cells malignantly transformed by mot-2 show inactivation and cytoplasmic sequestration of the p53 protein. Cell Research, 1999, 9, 261-269.	5.7	42
230	Identification of a 55-kDa Ezrin-Related Protein That Induces Cytoskeletal Changes and Localizes to the Nucleolus. Experimental Cell Research, 1999, 250, 51-61.	1.2	27
231	A Novel Testis-Specific Metallothionein-like Protein, Tesmin, Is an Early Marker of Male Germ Cell Differentiation. Genomics, 1999, 57, 130-136.	1.3	69
232	Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochemical Journal, 1999, 343, 461-466.	1.7	79
233	Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochemical Journal, 1999, 343, 461.	1.7	28
234	Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes and Development, 1999, 13, 412-423.	2.7	253

#	Article	IF	CITATIONS
235	Malignant transformation of NIH3T3 cells by overexpression of mot-2 protei. Oncogene, 1998, 17, 907-911.	2.6	86
236	A Novel Alternatively Spliced Form of Murine Vascular Endothelial Growth Factor, VEGF 115. Journal of Biological Chemistry, 1998, 273, 3033-3038.	1.6	40
237	Inactivation of Tumor Suppressor p53 by Mot-2, a hsp70 Family Member. Journal of Biological Chemistry, 1998, 273, 29586-29591.	1.6	207
238	Expression Analysis of Mortalin, a Unique Member of the Hsp70 Family of Proteins, in Rat Tissues. Experimental Cell Research, 1997, 232, 56-63.	1.2	28
239	Decrease in Amplified Telomeric Sequences and Induction of Senescence Markers by Introduction of Human Chromosome 7 or Its Segments in SUSM-1. Experimental Cell Research, 1997, 235, 345-353.	1.2	57
240	Elevated Levels of Mortalin Expression in Human Brain Tumors. Experimental Cell Research, 1997, 237, 38-45.	1.2	98
241	Expression of endothelin, fibronectin, and mortalin as aging and mortality markers. Experimental Gerontology, 1997, 32, 95-103.	1.2	34
242	Genetic Differences between the Pancytosolic and Perinuclear Forms of Murine Mortalin. Experimental Cell Research, 1996, 226, 381-386.	1.2	26
243	An effective elimination of false positives isolated from differential display of mRNAs. Molecular Biotechnology, 1996, 6, 213-217.	1.3	8
244	Detection and Purification of Sequence-Specific DNA Binding Protein. Analytical Biochemistry, 1996, 241, 23-29.	1.1	1
245	Correlation between Complementation Group for Immortality and the Cellular Distribution of Mortalin. Experimental Cell Research, 1995, 216, 101-106.	1.2	81
246	Mouse and human chromosomal assignments of mortalin, a novel member of the murine hsp70 family of proteins. FEBS Letters, 1995, 361, 269-272.	1.3	27
247	Cellular Mortality to Immortalization: Mortalin Cell Structure and Function, 1994, 19, 1-10.	0.5	23
248	Enhanced expression of multiple forms of VEGF is associated with spontaneous immortalization of murine fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1224, 365-370.	1.9	16
249	Identification of genetic events involved in early steps of immortalization of mouse fibroblasts. Biochimica Et Biophysica Acta - General Subjects, 1994, 1201, 389-396.	1.1	12
250	Sex- and tissue-specific Bkm(GATA)-binding protein in the germ cells of heterogametic sex. Journal of Biological Chemistry, 1994, 269, 25321-7.	1.6	22
251	Identification and differential expression of yeast SEC23 -related gene (Msec23) in mouse tissues. FEBS Letters, 1993, 315, 193-196.	1.3	8
252	On the Cytosolic and Perinuclear Mortalin: An Insight by Heat Shock. Biochemical and Biophysical Research Communications, 1993, 193, 348-355.	1.0	24

#	Article	IF	CITATIONS
253	Spontaneous Immortalization of Mouse Fibroblasts Involves Structural Changes in Senescence-Inducing Protein, Mortalin. Biochemical and Biophysical Research Communications, 1993, 197, 202-206.	1.0	14
254	Differential Subcellular Distribution of Mortalin in Mortal and Immortal Mouse and Human Fibroblasts. Experimental Cell Research, 1993, 207, 442-448.	1.2	95
255	Induction of cellular senescence by transfection of cytosolic mortalin cDNA in NIH 3T3 cells. Journal of Biological Chemistry, 1993, 268, 22239-42.	1.6	63
256	Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. Journal of Biological Chemistry, 1993, 268, 6615-21.	1.6	156
257	Protein markers for cellular mortality and immortality. Mutation Research - DNAging, 1991, 256, 243-254.	3.3	20
258	Natural and conditional ageing of mouse fibroblasts: Genetic vs. epigenetic control. Biochemical and Biophysical Research Communications, 1991, 178, 269-275.	1.0	13
259	Catalase and peroxidase activities in response to ascorbic acid feeding in aging Zaprionus paravittiger (Diptera). Age, 1990, 13, 33-35.	3.0	2
260	X Chromosome Restriction Fragment Length Polymorphisms in Five Racial Groups: Rare Variant Detected with the RC8 (DXS9) Probe in the Marathi Population, India. Human Heredity, 1989, 39, 309-312.	0.4	2
261	Effect of Sodium Selenite on Antioxidative Enzymes of Banana Fruitfly. Gerontology, 1989, 35, 188-191.	1.4	9
262	Effect of Sodium Hypophosphite Feeding on Adenosine Triphosphatase Activity in Ageing <i>Zaprionus paravittiger</i> (Diptera). Gerontology, 1989, 35, 14-18.	1.4	2
263	An antioxidant induced alterations in peroxidase activity in ageing Zaprionus paravittiger (Diptera). Mechanisms of Ageing and Development, 1988, 45, 277-283.	2.2	6
264	Studies on catalase in ageing Zaprionus para vittiger (diptera) with special reference to an antioxidant feeding. Mechanisms of Ageing and Development, 1987, 40, 139-147.	2.2	4
265	An antioxidant-induced life table modification and life-span prolongation in Zaprionus paravittiger (Diptera). Archives of Gerontology and Geriatrics, 1987, 6, 101-106.	1.4	4
266	Changes in total and mitochondrial nucleic acid content in aging caryedon serratus oliver (coleoptera). Experimental Gerontology, 1986, 21, 87-91.	1.2	3
267	Effect of sodium hypophosphite on longevity and nucleic acid content in aging Zaprionus paravittiger. Age, 1986, 9, 79-84.	3.0	8
268	Life Span Studies in <i>Zaprionus paravittiger</i> with Sodium Hypophosphite Feeding. Gerontology, 1986, 32, 141-147.	1.4	10
269	Age-associated changes in nucleic acid content in Zaprionus paravittiger. Archives of Gerontology and Geriatrics, 1985, 4, 157-162.	1.4	1
270	Changes in nucleic acid content in aging Drosophila bipectinata. Experimental Gerontology, 1984, 19, 199-203.	1,2	5

RENU WADHWA

#	Article	IF	CITATIONS
271	Effect of butylated hydroxytoluene on the life span of Drosophila bipectinata. Mechanisms of Ageing and Development, 1983, 23, 67-71.	2.2	26
272	Why is Mortalin a Potential Therapeutic Target for Cancer?. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8