Emiliano Cortes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1556121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	1.6	24
2	Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, e202113664.	7.2	102
3	Hybrid Plasmonic Nanomaterials for Hydrogen Generation and Carbon Dioxide Reduction. ACS Energy Letters, 2022, 7, 778-815.	8.8	110
4	Challenges on optical printing of colloidal nanoparticles. Journal of Chemical Physics, 2022, 156, 034201.	1.2	12
5	Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO2 reduction reaction. Applied Catalysis B: Environmental, 2022, 306, 121093.	10.8	53
6	Halide–Metal Complexes at Plasmonic Interfaces Create New Decay Pathways for Plasmons and Excited Molecules. ACS Photonics, 2022, 9, 895-904.	3.2	7
7	Accelerating CO ₂ Electroreduction to Multicarbon Products via Synergistic Electric–Thermal Field on Copper Nanoneedles. Journal of the American Chemical Society, 2022, 144, 3039-3049.	6.6	147
8	Ligand Engineering in Nickel Phthalocyanine to Boost the Electrocatalytic Reduction of CO ₂ . Advanced Functional Materials, 2022, 32, .	7.8	80
9	Vertical Cu Nanoneedle Arrays Enhance the Local Electric Field Promoting C ₂ Hydrocarbons in the CO ₂ Electroreduction. Nano Letters, 2022, 22, 1963-1970.	4.5	95
10	Experimental characterization techniques for plasmon-assisted chemistry. Nature Reviews Chemistry, 2022, 6, 259-274.	13.8	56
11	Controlling Plasmonic Chemistry Pathways through Specific Ion Effects. Advanced Optical Materials, 2022, 10, .	3.6	10
12	Optical Metasurfaces for Energy Conversion. Chemical Reviews, 2022, 122, 15082-15176.	23.0	52
13	Tailoring Plasmonic Bimetallic Nanocatalysts Toward Sunlightâ€Driven H ₂ Production. Advanced Functional Materials, 2022, 32, .	7.8	33
14	<i>In Situ</i> Photothermal Response of Single Gold Nanoparticles through Hyperspectral Imaging Anti-Stokes Thermometry. ACS Nano, 2021, 15, 2458-2467.	7.3	42
15	In situ surface-enhanced Raman spectroelectrochemistry reveals the molecular conformation of electrolyte additives in Li-ion batteries. Journal of Materials Chemistry A, 2021, 9, 20024-20031.	5.2	7
16	Paired Ru‒O‒Mo ensemble for efficient and stable alkaline hydrogen evolution reaction. Nano Energy, 2021, 82, 105767.	8.2	86
17	Anapole-Assisted Absorption Engineering in Arrays of Coupled Amorphous Gallium Phosphide Nanodisks. ACS Photonics, 2021, 8, 1469-1476.	3.2	29
18	Hot electron physics and applications. Journal of Applied Physics, 2021, 129, .	1.1	8

#	Article	IF	CITATIONS
19	Gallium Phopshide Nanostructures on Transparent Substrates for Nonlinear and Ultrafast Nanophotonics. , 2021, , .		0
20	Generating, probing and utilising photo-induced surface oxygen vacancies for trace molecular detection. , 2021, , .		0
21	Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot Electron Generation. ACS Nano, 2021, 15, 10553-10564.	7.3	37
22	Metal-molecule charge transfer through Fermi level equilibration in plasmonic systems. , 2021, , .		0
23	Super-Resolution Mapping of Light-Driven Reactions on Metal Nanostructures. , 2021, , .		0
24	Fermi Level Equilibration at the Metal–Molecule Interface in Plasmonic Systems. Nano Letters, 2021, 21, 6592-6599.	4.5	25
25	Acoustic Coupling between Plasmonic Nanoantennas: Detection and Directionality of Surface Acoustic Waves. ACS Photonics, 2021, 8, 2846-2852.	3.2	13
26	Engineering gallium phosphide nanostructures for efficient nonlinear photonics and enhanced spectroscopies. Nanophotonics, 2021, 10, 4261-4271.	2.9	13
27	The Effect of Photoinduced Surface Oxygen Vacancies on the Charge Carrier Dynamics in TiO ₂ Films. Nano Letters, 2021, 21, 8348-8354.	4.5	29
28	Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. Chinese Journal of Catalysis, 2021, 42, 1500-1508.	6.9	56
29	Metasurface Photoelectrodes for Enhanced Solar Fuel Generation. Advanced Energy Materials, 2021, 11, 2102877.	10.2	21
30	Probing the Role of Atomic Defects in Photocatalytic Systems through Photoinduced Enhanced Raman Scattering. ACS Energy Letters, 2021, 6, 4273-4281.	8.8	22
31	Local Growth Mediated by Plasmonic Hot Carriers: Chirality from Achiral Nanocrystals Using Circularly Polarized Light. Nano Letters, 2021, 21, 10315-10324.	4.5	37
32	Auf dem Weg zur verlÄsslichen und quantitativen SERSâ€Spektroskopie: von Schlüsselparametern zur guten analytischen Praxis. Angewandte Chemie, 2020, 132, 5496-5505.	1.6	4
33	Towards Reliable and Quantitative Surfaceâ€Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angewandte Chemie - International Edition, 2020, 59, 5454-5462.	7.2	324
34	Nanostructured amorphous gallium phosphide on silica for nonlinear and ultrafast nanophotonics. Nanoscale Horizons, 2020, 5, 1500-1508.	4.1	24
35	Core–Shell Bimetallic Nanoparticle Trimers for Efficient Light-to-Chemical Energy Conversion. ACS Energy Letters, 2020, 5, 3881-3890.	8.8	37
36	Template Dissolution Interfacial Patterning of Single Colloids for Nanoelectrochemistry and Nanosensing. ACS Nano, 2020, 14, 17693-17703.	7.3	25

#	Article	IF	CITATIONS
37	Special topic on emerging directions in plasmonics. Journal of Chemical Physics, 2020, 153, 010401.	1.2	8
38	Electrical control of single-photon emission in highly charged individual colloidal quantum dots. Science Advances, 2020, 6, .	4.7	33
39	Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation. Science Advances, 2020, 6, .	4.7	61
40	Direct Detection of Optical Forces of Magnetic Nature in Dielectric Nanoantennas. Nano Letters, 2020, 20, 7627-7634.	4.5	11
41	Challenges in Plasmonic Catalysis. ACS Nano, 2020, 14, 16202-16219.	7.3	203
42	Determination of Nanoscale Mechanical Properties of Polymers via Plasmonic Nanoantennas. ACS Photonics, 2020, 7, 1403-1409.	3.2	19
43	Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas. ACS Nano, 2020, 14, 8508-8517.	7.3	11
44	Anapole Excitations in Oxygen-Vacancy-Rich TiO _{2–<i>x</i>} Nanoresonators: Tuning the Absorption for Photocatalysis in the Visible Spectrum. ACS Nano, 2020, 14, 2456-2464.	7.3	58
45	Hot carrier optoelectronics with titanium nitride. , 2020, , .		1
46	Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance. , 2020, , .		0
47	Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance (Conference Presentation). , 2020, , .		0
48	Enhancing hybrid metal-semiconductor systems beyond SERS with PIERS (photo-induced enhanced) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
49	From Optical to Chemical Hot Spots in Plasmonics. Accounts of Chemical Research, 2019, 52, 2525-2535.	7.6	131
50	Particleâ€inâ€aâ€Frame Nanostructures with Interior Nanogaps. Angewandte Chemie, 2019, 131, 16037-16041.	1.6	2
51	Particleâ€inâ€aâ€Frame Nanostructures with Interior Nanogaps. Angewandte Chemie - International Edition, 2019, 58, 15890-15894.	7.2	25
52	Dynamics of Photoâ€Induced Surface Oxygen Vacancies in Metalâ€Oxide Semiconductors Studied Under Ambient Conditions. Advanced Science, 2019, 6, 1901841.	5.6	62
53	Monitoring plasmonic hot-carrier chemical reactions at the single particle level. Faraday Discussions, 2019, 214, 73-87.	1.6	28
54	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	1.6	5

#	Article	lF	CITATIONS
55	Resonant Far- to Near-Field Channeling in Synergetic Multiscale Antennas. ACS Photonics, 2019, 6, 1466-1473.	3.2	4
56	Dynamics of hot electron generation in metallic nanostructures: general discussion. Faraday Discussions, 2019, 214, 123-146.	1.6	21
57	New materials for hot electron generation: general discussion. Faraday Discussions, 2019, 214, 365-386.	1.6	9
58	Size-Selective Optical Printing of Silicon Nanoparticles through Their Dipolar Magnetic Resonance. ACS Photonics, 2019, 6, 815-822.	3.2	40
59	Spectral Screening of the Energy of Hot Holes over a Particle Plasmon Resonance. Nano Letters, 2019, 19, 1867-1874.	4.5	106
60	Surface Oxygen Vacancies: Dynamics of Photoâ€Induced Surface Oxygen Vacancies in Metalâ€Oxide Semiconductors Studied Under Ambient Conditions (Adv. Sci. 22/2019). Advanced Science, 2019, 6, 1970132.	5.6	3
61	Photo-induced enhanced Raman spectroscopy (PIERS): sensing atomic-defects, explosives and biomolecules. , 2019, , .		2
62	Size-Selective Optical Printing of Silicon Nanoparticles through Their Dipolar Magnetic Resonance. , 2019, , .		0
63	Collective modes of self-assembled supercluster metamaterials: towards label-free sensing. , 2019, , .		Ο
64	Surface-Enhanced Spectroscopies of a Molecular Monolayer in an All-Dielectric Nanoantenna. ACS Photonics, 2018, 5, 1546-1557.	3.2	48
65	Solving the Long-Standing Controversy of Long-Chain Alkanethiols Surface Structure on Au(111). Journal of Physical Chemistry C, 2018, 122, 3893-3902.	1.5	14
66	Correction to Connecting Metallic Nanoparticles by Optical Printing. Nano Letters, 2018, 18, 1555-1555.	4.5	0
67	Nanoscale Control of Molecular Self-Assembly Induced by Plasmonic Hot-Electron Dynamics. ACS Nano, 2018, 12, 2184-2192.	7.3	60
68	Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping. Nano Letters, 2018, 18, 3400-3406.	4.5	41
69	Acoustic Far-Field Hypersonic Surface Wave Detection with Single Plasmonic Nanoantennas. Physical Review Letters, 2018, 121, 253902.	2.9	23
70	Activating plasmonic chemistry. Science, 2018, 362, 28-29.	6.0	72
71	Generation and Detection of Surface Acoustic Waves using Single Plasmonic Nanoresonators. , 2018, ,		1
72	3D confocal Raman mapping of field enhancement inside supercluster metamaterials (Conference) Tj ETQq0 C) 0 rgBT /Ov	erlock 10 Tf 5

#	Article	IF	CITATIONS
73	Bridging the Gap between Dielectric Nanophotonics and the Visible Regime with Effectively Lossless Gallium Phosphide Antennas. Nano Letters, 2017, 17, 1219-1225.	4.5	208
74	Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot. Nature Communications, 2017, 8, 14513.	5.8	47
75	Plasmonic hot electron transport drives nano-localized chemistry. Nature Communications, 2017, 8, 14880.	5.8	328
76	Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles. ACS Nano, 2017, 11, 9678-9688.	7.3	58
77	Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing. Nano Letters, 2017, 17, 5747-5755.	4.5	81
78	3D Confocal Raman Tomography to Probe Field Enhancements inside Supercluster Metamaterials. ACS Photonics, 2017, 4, 2070-2077.	3.2	11
79	Efficiency and Bond Selectivity in Plasmonâ€Induced Photochemistry. Advanced Optical Materials, 2017, 5, 1700191.	3.6	61
80	Light-Induced Polarization-Directed Growth of Optically Printed Gold Nanoparticles. Nano Letters, 2016, 16, 6529-6533.	4.5	44
81	Plasmonic Photothermal Fluorescence Modulation for Homogeneous Biosensing. ACS Sensors, 2016, 1, 1351-1357.	4.0	18
82	Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nature Communications, 2016, 7, 12189.	5.8	201
83	Plasmonic Nanoprobes for Stimulated Emission Depletion Nanoscopy. ACS Nano, 2016, 10, 10454-10461.	7.3	29
84	Tailored Hypersound Generation in Single Plasmonic Nanoantennas. Nano Letters, 2016, 16, 1428-1434.	4.5	40
85	Connecting Metallic Nanoparticles by Optical Printing. Nano Letters, 2016, 16, 1224-1229.	4.5	61
86	Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nature Communications, 2015, 6, 7915.	5.8	433
87	Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion. Faraday Discussions, 2015, 178, 253-279.	1.6	3
88	Synergetic Light-Harvesting and Near-Field Enhancement in Multiscale Patterned Gold Substrates. ACS Photonics, 2015, 2, 1355-1365.	3.2	8
89	High-Efficiency Second Harmonic Generation from a Single Hybrid ZnO Nanowire/Au Plasmonic Nano-Oligomer. Nano Letters, 2014, 14, 6660-6665.	4.5	93
90	Self-assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry and surface structures. RSC Advances, 2014, 4, 27730-27754.	1.7	187

#	Article	IF	CITATIONS
91	Strong Correlation between Molecular Configurations and Charge-Transfer Processes Probed at the Single-Molecule Level by Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2013, 135, 2809-2815.	6.6	68
92	Complex Surface Chemistry of 4-Mercaptopyridine Self-Assembled Monolayers on Au(111). Langmuir, 2012, 28, 6839-6847.	1.6	45
93	Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces. Nanoscale, 2012, 4, 531-540.	2.8	8
94	The Chemistry of the Sulfur–Gold Interface: In Search of a Unified Model. Accounts of Chemical Research, 2012, 45, 1183-1192.	7.6	459
95	From Single to Multiple Ag-Layer Modification of Au Nanocavity Substrates: A Tunable Probe of the Chemical Surface-Enhanced Raman Scattering Mechanism. ACS Nano, 2011, 5, 5433-5443.	7.3	37
96	Aromatic and Aliphatic Thiol Self-Assembled Monolayers on Au: Anchoring and Delivering Copper Species. Journal of Physical Chemistry C, 2011, 115, 24707-24717.	1.5	17
97	Monitoring the Electrochemistry of Single Molecules by Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2010, 132, 18034-18037.	6.6	121
98	Electrochemical Modulation for Signal Discrimination in Surface Enhanced Raman Scattering (SERS). Analytical Chemistry, 2010, 82, 6919-6925.	3.2	29
99	Dissociative Photoionization of Methyl Thiocyanate, CH3SCN, in the Proximity of the Sulfur 2p Edge. Journal of Physical Chemistry A, 2009, 113, 564-572.	1.1	16
100	Perchloromethyl Mercaptan, CCl ₃ SCl, Excited with Synchrotron Radiation in the Proximity of the Sulfur and Chlorine 2p Edges: Dissociative Photoionization of Highly Halogenated Species. Journal of Physical Chemistry A, 2009, 113, 9624-9632.	1.1	16
101	Enhanced Stability of Thiolate Self-Assembled Monolayers (SAMs) on Nanostructured Gold Substrates. Langmuir, 2009, 25, 5661-5666.	1.6	70
102	Ag-modified Au nanocavity SERS substrates. Physical Chemistry Chemical Physics, 2009, 11, 7469.	1.3	23