Tiago Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1555952/publications.pdf

Version: 2024-02-01

		331259	301761
199	2,385	21	39
papers	citations	h-index	g-index
210	210	210	1481
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	Local Energy Markets: Paving the Path Toward Fully Transactive Energy Systems. IEEE Transactions on Power Systems, 2019, 34, 4081-4088.	4.6	217
2	MASCEM: Electricity Markets Simulation with Strategic Agents. IEEE Intelligent Systems, 2011, 26, 9-17.	4.0	134
3	A new approach for multi-agent coalition formation and management in the scope of electricity markets. Energy, 2011, 36, 5004-5015.	4.5	80
4	Adaptive learning in agents behaviour: A framework for electricity markets simulation. Integrated Computer-Aided Engineering, 2014, 21, 399-415.	2.5	67
5	Stochastic interval-based optimal offering model for residential energy management systems by household owners. International Journal of Electrical Power and Energy Systems, 2019, 105, 201-219.	3.3	65
6	Multilevel Negotiation in Smart Grids for VPP Management of Distributed Resources. IEEE Intelligent Systems, 2012, 27, 8-16.	4.0	63
7	Multi-agent simulation of competitive electricity markets: Autonomous systems cooperation for European market modeling. Energy Conversion and Management, 2015, 99, 387-399.	4.4	59
8	MASCEM: Optimizing the performance of a multi-agent system. Energy, 2016, 111, 513-524.	4.5	58
9	Adaptive Portfolio Optimization for Multiple Electricity Markets Participation. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1720-1733.	7.2	57
10	Ensemble learning for electricity consumption forecasting in office buildings. Neurocomputing, 2021, 423, 747-755.	3.5	54
11	Optimal Model for Local Energy Community Scheduling Considering Peer to Peer Electricity Transactions. IEEE Access, 2021, 9, 12420-12430.	2.6	52
12	MASGriP & Damp; #x2014; A Multi-Agent Smart Grid Simulation Platform., 2012,,.		50
13	A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles. Energy, 2014, 67, 81-96.	4.5	49
14	Electric Vehicles' User Charging Behaviour Simulator for a Smart City. Energies, 2019, 12, 1470.	1.6	47
15	Case based reasoning with expert system and swarm intelligence to determine energy reduction in buildings energy management. Energy and Buildings, 2017, 155, 269-281.	3.1	46
16	Support Vector Machines for decision support in electricity markets× ³ strategic bidding. Neurocomputing, 2016, 172, 438-445.	3.5	44
17	Survey on Complex Optimization and Simulation for the New Power Systems Paradigm. Complexity, 2018, 2018, 1-32.	0.9	44
18	Multi-agent based electricity market simulator with VPP: Conceptual and implementation issues. , 2009, , .		41

#	Article	IF	Citations
19	Decision Support for Small Players Negotiations Under a Transactive Energy Framework. IEEE Transactions on Power Systems, 2019, 34, 4015-4023.	4.6	37
20	Dynamic artificial neural network for electricity market prices forecast., 2012,,.		34
21	Strategic bidding in electricity markets: An agent-based simulator with game theory for scenario analysis. Integrated Computer-Aided Engineering, 2013, 20, 335-346.	2.5	34
22	Multi-Agent-Based CBR Recommender System for Intelligent Energy Management in Buildings. IEEE Systems Journal, 2019, 13, 1084-1095.	2.9	32
23	Decision Support for Energy Contracts Negotiation with Game Theory and Adaptive Learning. Energies, 2015, 8, 9817-9842.	1.6	29
24	Generation of realistic scenarios for multi-agent simulation of electricity markets. Energy, 2016, 116, 128-139.	4.5	25
25	Organization-based Multi-Agent structure of the Smart Home Electricity System. , 2017, , .		23
26	A New Hybrid-Adaptive Differential Evolution for a Smart Grid Application Under Uncertainty., 2018,,.		23
27	VPP's multi-level negotiation in smart grids and competitive electricity markets. , $2011, , .$		22
28	Multi-Agent Decision Support Tool to Enable Interoperability among Heterogeneous Energy Systems. Applied Sciences (Switzerland), 2018, 8, 328.	1.3	19
29	Dynamic Fuzzy Clustering Method for Decision Support in Electricity Markets Negotiation. Advances in Distributed Computing and Artificial Intelligence Journal, 2016, 5, 23-35.	1.1	19
30	Enabling Communications in Heterogeneous Multi-Agent Systems: Electricity Markets Ontology. Advances in Distributed Computing and Artificial Intelligence Journal, 2016, 5, 15-42.	1.1	19
31	MASCEM - An Electricity Market Simulator providing Coalition Support for Virtual Power Players. , 2009, , .		17
32	Context aware Q-Learning-based model for decision support in the negotiation of energy contracts. International Journal of Electrical Power and Energy Systems, 2019, 104, 489-501.	3.3	17
33	Energy Flexibility Management Based on Predictive Dispatch Model of Domestic Energy Management System. Energies, 2017, 10, 1397.	1.6	16
34	Portfolio optimization of electricity markets participation using forecasting error in risk formulation. International Journal of Electrical Power and Energy Systems, 2021, 129, 106739.	3.3	16
35	Electrical Load Demand Forecasting Using Feed-Forward Neural Networks. Energies, 2021, 14, 7644.	1.6	16
36	Short-term wind speed forecasting using Support Vector Machines. , 2014, , .		15

#	Article	IF	Citations
37	An Interoperable Approach for Energy Systems Simulation: Electricity Market Participation Ontologies. Energies, 2016, 9, 878.	1.6	15
38	Electrical Energy Consumption Forecast Using Support Vector Machines., 2016,,.		15
39	Data mining approach to support the generation of Realistic Scenarios for multi-agent simulation of electricity markets. , $2014, , .$		14
40	Energy consumption forecasting based on Hybrid Neural Fuzzy Inference System. , 2016, , .		14
41	Energy flexibility assessment of a multi agent-based smart home energy system. , 2017, , .		14
42	Strategic participation in competitive electricity markets: Internal versus sectorial data analysis. International Journal of Electrical Power and Energy Systems, 2019, 108, 432-444.	3.3	14
43	Hybrid approach based on particle swarm optimization for electricity markets participation. Energy Informatics, 2019, 2, .	1.4	14
44	Six thinking hats: A novel metalearner for intelligent decision support in electricity markets. Decision Support Systems, 2015, 79, 1-11.	3.5	13
45	A Local Electricity Market Model for DSO Flexibility Trading. , 2019, , .		13
46	Application Ontology for Multi-Agent and Web-Services' Co-Simulation in Power and Energy Systems. IEEE Access, 2020, 8, 81129-81141.	2.6	13
47	Coalition of distributed generation units to Virtual Power Players - a game theory approach. Integrated Computer-Aided Engineering, 2015, 22, 297-309.	2.5	12
48	Reserve costs allocation model for energy and reserve market simulation. , 2017, , .		12
49	Smart City: A GECAD-BISITE Energy Management Case Study. Advances in Intelligent Systems and Computing, 2018, , 92-100.	0.5	12
50	Bid Definition Method for Electricity Markets Based on an Adaptive Multiagent System. Advances in Intelligent and Soft Computing, 2011, , 309-316.	0.2	12
51	Multi-agent approach for power system in a smart grid protection context. , 2013, , .		11
52	Negotiation context analysis in electricity markets. Energy, 2015, 85, 78-93.	4.5	11
53	Dynamic Fuzzy Estimation of Contracts Historic Information Using an Automatic Clustering Methodology. Communications in Computer and Information Science, 2015, , 270-282.	0.4	11
54	Decision Support Application for Energy Consumption Forecasting. Applied Sciences (Switzerland), 2019, 9, 699.	1.3	10

#	Article	IF	Citations
55	Strategic Bidding Methodology for Electricity Markets Using Adaptive Learning. Lecture Notes in Computer Science, 2011, , 490-500.	1.0	10
56	AiD-EM: Adaptive Decision Support for Electricity Markets Negotiations. , 2019, , .		10
57	GA optimization technique for portfolio optimization of electricity market participation. , 2016, , .		9
58	House management system with real and virtual resources: Energy efficiency in residential microgrid. , 2016, , .		9
59	Strategic Particle Swarm Inertia Selection for Electricity Markets Participation Portfolio Optimization. Applied Artificial Intelligence, 2018, 32, 745-767.	2.0	9
60	MARTINEâ€"A Platform for Real-Time Energy Management in Smart Grids. Energies, 2021, 14, 1820.	1.6	9
61	Particle Swarm Optimization of Electricity Market Negotiating Players Portfolio. Communications in Computer and Information Science, 2014, , 273-284.	0.4	9
62	Electricity Markets Ontology to Support MASCEM's Simulations. Communications in Computer and Information Science, 2016, , 393-404.	0.4	9
63	Lighting consumption optimization using fish school search algorithm. , 2017, , .		8
64	Energy Flexibility Management in Power Distribution Systems: Decentralized Approach. , 2018, , .		8
65	A Review of the Main Machine Learning Methods for Predicting Residential Energy Consumption. , 2019,		8
66	Adaptive entropy-based learning with dynamic artificial neural network. Neurocomputing, 2019, 338, 432-440.	3.5	8
67	Ontologies to Enable Interoperability of Multi-Agent Electricity Markets Simulation and Decision Support. Electronics (Switzerland), 2021, 10, 1270.	1.8	8
68	Multiagent system for adaptive strategy formulation in electricity markets., 2011,,.		7
69	Balancing market integration in MASCEM electricity market simulator. , 2012, , .		7
70	Adaptive Tool for Automatic Data Collection of Real Electricity Markets., 2012,,.		7
71	Intelligent remuneration and tariffs for virtual power players. , 2013, , .		7
72	Distributed intelligent management of microgrids using a multi-agent simulation platform., 2014,,.		7

#	Article	IF	Citations
73	Multiagent System Architecture for Short-term Operation of Integrated Microgrids. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 6355-6360.	0.4	7
74	An Ad-Hoc Initial Solution Heuristic for Metaheuristic Optimization of Energy Market Participation Portfolios. Energies, 2017, 10, 883.	1.6	7
75	Iberian electricity market ontology to enable smart grid market simulation. Energy Informatics, 2018, 1, \cdot	1.4	7
76	Electricity consumption forecasting in office buildings: an artificial intelligence approach., 2019,,.		7
77	Contextual learning for energy forecasting in buildings. International Journal of Electrical Power and Energy Systems, 2022, 136, 107707.	3.3	7
78	Complex market integration in MASCEM electricity market simulator. , 2011, , .		6
79	Intelligent electric vehicle heuristic for Energy Resource Management using Simulated Annealing. , 2012, , .		6
80	A multi-agent based approach for intelligent smart grid management. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 109-114.	0.4	6
81	Dispatch of distributed energy resources to provide energy and reserve in smart grids using a particle swarm optimization approach. , 2013, , .		6
82	EPEX ontology: Enhancing agent-based electricity market simulation. , 2017, , .		6
83	Genetic Algorithms for Portfolio Optimization with Weighted Sum Approach. , 2018, , .		6
84	Solar Thermal Collector Output Temperature Prediction by Hybrid Intelligent Model for Smartgrid and Smartbuildings Applications and Optimization. Applied Sciences (Switzerland), 2020, 10, 4644.	1.3	6
85	Constrained Generation Bids in Local Electricity Markets: A Semantic Approach. Energies, 2020, 13, 3990.	1.6	6
86	Simulation $\hat{a}\in$ Concepts and Applications. Communications in Computer and Information Science, 2010, , 429-434.	0.4	6
87	Energy Consumption Forecasting Using Ensemble Learning Algorithms. Advances in Intelligent Systems and Computing, 2020, , 5-13.	0.5	6
88	Multi-Agent based Smart Grid management and simulation: Situation awareness and learning in a test bed with simulated and real installations and players. , 2013 , , .		5
89	Smart Grid and Electricity Market joint simulation using complementary Multi-Agent platforms. , 2015, , .		5
90	Metalearning to support competitive electricity market players' strategic bidding. Electric Power Systems Research, 2016, 135, 27-34.	2.1	5

#	Article	IF	CITATIONS
91	Nord Pool Ontology to Enhance Electricity Markets Simulation in MASCEM. Lecture Notes in Computer Science, 2017, , 283-294.	1.0	5
92	Hybrid particle swarm optimization of electricity market participation portfolio., 2017,,.		5
93	Day ahead electricity consumption forecasting with MOGUL learning model. , 2018, , .		5
94	Decision Support for Negotiations among Microgrids Using a Multiagent Architecture. Energies, 2018, 11, 2526.	1.6	5
95	Multi-agent semantic interoperability in complex energy systems simulation and decision support., 2019,,.		5
96	From the smart grid to the local electricity market., 2021,, 63-76.		5
97	Demonstration of an Energy Consumption Forecasting System for Energy Management in Buildings. Lecture Notes in Computer Science, 2019, , 462-468.	1.0	5
98	Fair Remuneration of Energy Consumption Flexibility Using Shapley Value. Lecture Notes in Computer Science, 2019, , 532-544.	1.0	5
99	Strategic Bidding for Electricity Markets Negotiation Using Support Vector Machines. Advances in Intelligent Systems and Computing, 2014, , 9-17.	0.5	5
100	Data Extraction Tool to Analyse, Transform and Store Real Data from Electricity Markets. Advances in Intelligent Systems and Computing, 2014, , 387-395.	0.5	5
101	Adaptive Learning in Multiagent Systems: A Forecasting Methodology Based on Error Analysis. Advances in Intelligent and Soft Computing, 2012, , 349-357.	0.2	5
102	Data mining applications in power systems â€" Case-studies and future trends. , 2009, , .		4
103	Intelligent micro grid management using a multi-agent approach. , 2013, , .		4
104	Scenarios generation for multi-agent simulation of electricity markets based on intelligent data analysis. , 2013, , .		4
105	Data Mining Approach for Decision Support in Real Data Based Smart Grid Scenario. , 2015, , .		4
106	Intelligent energy forecasting based on the correlation between solar radiation and consumption patterns. , 2016 , , .		4
107	Customized Normalization Method to Enhance the Clustering Process of Consumption Profiles. Advances in Intelligent Systems and Computing, 2016, , 67-76.	0.5	4
108	Day-ahead forecasting approach for energy consumption of an office building using support vector machines. , $2018, \ldots$		4

#	Article	IF	CITATIONS
109	Automated combination of bilateral energy contracts negotiation tactics., 2018,,.		4
110	Prosumer Community Portfolio Optimization via Aggregator: The Case of the Iberian Electricity Market and Portuguese Retail Market. Energies, 2021, 14, 3747.	1.6	4
111	Upgrading BRICKSâ€"The Context-Aware Semantic Rule-Based System for Intelligent Building Energy and Security Management. Energies, 2021, 14, 4541.	1.6	4
112	Metalearning in ALBidS: A Strategic Bidding System for Electricity Markets. Advances in Intelligent and Soft Computing, 2012, , 247-256.	0.2	4
113	Ontologies for the Interoperability of Heterogeneous Multi-agent Systems in the Scope of Power and Energy Systems. Advances in Intelligent Systems and Computing, 2018, , 300-301.	0.5	4
114	Dynamic remuneration of electricity consumers flexibility. Energy Reports, 2022, 8, 623-627.	2.5	4
115	Cost dependent strategy for electricity markets bidding based on adaptive reinforcement learning. , 2011, , .		3
116	Intelligent decision making in electricity markets: Simulated annealing Q-Learning., 2012,,.		3
117	Remuneration and Tariffs in the Context of Virtual Power Players. , 2012, , .		3
118	Load control timescales simulation in a Multi-Agent Smart Grid Platform. , 2013, , .		3
119	Solar Intensity Characterization Using Data-Mining to Support Solar Forecasting. Advances in Intelligent Systems and Computing, 2015, , 193-201.	0.5	3
120	MASCEM: EPEX SPOT Day-Ahead market integration and simulation. , 2015, , .		3
121	Pan-European Electricity Market Simulation Considering the European Power Network Capacities. , 2015, , .		3
122	Application of a Hybrid Neural Fuzzy Inference System to Forecast Solar Intensity. , 2016, , .		3
123	TOOCC: Enabling heterogeneous systems interoperability in the study of energy systems. , 2017, , .		3
124	Case-based reasoning using expert systems to determine electricity reduction in residential buildings. , 2018, , .		3
125	A Residential House Comparative Case Study Using Market Available Smart Plugs and EnAPlugs with Shared Knowledge. Energies, 2019, 12, 1647.	1.6	3
126	Adjacent Markets Influence Over Electricity Tradingâ€"Iberian Benchmark Study. Energies, 2020, 13, 2808.	1.6	3

#	Article	IF	CITATIONS
127	Consumer Flexibility Aggregation Using Partition Function Games With Non-Transferable Utility. IEEE Access, 2021, 9, 51519-51535.	2.6	3
128	Optimization of Electricity Markets Participation with Simulated Annealing. Advances in Intelligent Systems and Computing, 2016, , 27-39.	0.5	3
129	Electricity Markets Simulation: MASCEM Contributions to the Challenging Reality. Energy Systems, 2012, , 173-212.	0.5	3
130	Data Mining for Prosumers Aggregation considering the Self-Generation. Advances in Intelligent Systems and Computing, 2018, , 96-103.	0.5	3
131	A P2P Electricity Negotiation Agent Systems in Urban Smart Grids. Advances in Intelligent Systems and Computing, 2021, , 97-106.	0.5	3
132	Data Mining for Remuneration of Consumers Demand Response Participation. Communications in Computer and Information Science, 2020, , 326-338.	0.4	3
133	Multi-agent Simulation of Continental, Regional, and Micro Electricity Markets., 2012,,.		2
134	MASCEM restructuring: Ontologies for scenarios generation in power systems simulators. , 2013, , .		2
135	Realistic Multi-agent Simulation of Competitive Electricity Markets. , 2014, , .		2
136	Towards a unified European electricity market: The contribution of data-mining to support realistic simulation studies. , 2014 , , .		2
137	Energy resource management under the influence of the weekend transition considering an intensive use of electric vehicles., 2015,,.		2
138	Optimization of electricity markets participation with QPSO., 2016,,.		2
139	Wang and Mendel's fuzzy rule learning method for energy consumption forecasting considering the influence of environmental temperature. , 2016, , .		2
140	Energy consumption forecasting using genetic fuzzy rule-based systems based on MOGUL learning methodology., 2017,,.		2
141	Bilateral contract prices estimation using a Q-leaming based approach., 2017,,.		2
142	Clustering-based negotiation profiles definition for local energy transactions. , 2018, , .		2
143	Multi-Objective Portfolio Optimization of Electricity Markets Participation. , 2018, , .		2
144	Differential Evolution Aplication in Portfolio optimization for Electricity Markets., 2018,,.		2

#	Article	IF	Citations
145	Day-ahead electricity market price forecasting using artificial neural network with spearman data correlation., 2019,,.		2
146	Electricity markets and local electricity markets in Europe. , 2021, , 311-340.		2
147	Semantic Services Catalog for Multiagent Systems Society. Lecture Notes in Computer Science, 2021, , 229-240.	1.0	2
148	Extending a Trust model for Energy Trading with Cyber-Attack Detection. Electronics (Switzerland), 2021, 10, 1975.	1.8	2
149	Elspot: Nord Pool Spot Integration in MASCEM Electricity Market Simulator. Communications in Computer and Information Science, 2014, , 262-272.	0.4	2
150	Contextual Simulated Annealing Q-Learning for Pre-negotiation of Agent-Based Bilateral Negotiations. Lecture Notes in Computer Science, 2019, , 519-531.	1.0	2
151	Trust Model for a Multi-agent Based Simulation of Local Energy Markets. Communications in Computer and Information Science, 2020, , 183-194.	0.4	2
152	Power Quality of Renewable Energy Source Systems: A New Paradigm of Electrical Grids. Energies, 2022, 15, 3195.	1.6	2
153	Logic programming and fuzzy Monte Carlo for distribution network reconfiguration. , 2011, , .		1
154	Metalearner Based on Dynamic Neural Network for Strategic Bidding in Electricity Markets., 2013,,.		1
155	Adapting meeting tools to agent decision. , 2013, , .		1
156	Multi-agent Simulation of Bilateral Contracting in Competitive Electricity Markets., 2014,,.		1
157	Multi-agent based metalearner using genetic algorithm for decision support in electricity markets. , 2015, , .		1
158	Portfolio Optimization for Electricity Market Participation with Particle Swarm., 2015,,.		1
159	Agent-Based Smart Grid Market Simulation with Connection to Real Infrastructures. Communications in Computer and Information Science, 2015, , 283-295.	0.4	1
160	Portfolio Optimization for Electricity Market Participation with NPSO-LRS., 2016,,.		1
161	Scalable computational framework using intelligent optimization: Microgrids dispatch and electricity market joint simulation. IFAC-PapersOnLine, 2017, 50, 3362-3367.	0.5	1
162	Context classification in energy resource management of residential buildings using Artificial Neural Network., 2017,,.		1

#	Article	IF	CITATIONS
163	Energy consumption forecasting using neuro-fuzzy inference systems: Thales TRT building case study. , 2017, , .		1
164	Multi-agent Electricity Markets and Smart Grids Simulation with Connection to Real Physical Resources. Studies in Systems, Decision and Control, 2018, , 305-327.	0.8	1
165	Complex Optimization and Simulation in Power Systems. Complexity, 2018, 2018, 1-3.	0.9	1
166	Power Systems Simulation Using Ontologies to Enable the Interoperability of Multi-Agent Systems. , 2018, , .		1
167	Optimization of Multiple Electricity Markets Participation Using Evolutionary PSO. , 2018, , .		1
168	Day-Ahead Stochastic Scheduling Model Considering Market Transactions in Smart Grids. , 2018, , .		1
169	Optimizing Opponents Selection in Bilateral Contracts Negotiation with Particle Swarm. Communications in Computer and Information Science, 2018, , 116-124.	0.4	1
170	Collaborative Reinforcement Learning of Energy Contracts Negotiation Strategies. Communications in Computer and Information Science, 2019, , 202-210.	0.4	1
171	Electricity Price Forecast for Futures Contracts with Artificial Neural Network and Spearman Data Correlation. Advances in Intelligent Systems and Computing, 2019, , 12-20.	0.5	1
172	Classification of local energy trading negotiation profiles using artificial neural networks., 2019,,.		1
173	UCB1 Based Reinforcement Learning Model for Adaptive Energy Management in Buildings. Advances in Intelligent Systems and Computing, 2019, , 3-11.	0.5	1
174	Semantic Interoperability for Multiagent Simulation and Decision Support in Power Systems. Communications in Computer and Information Science, 2021, , 215-226.	0.4	1
175	Reinforcement Learning Based on the Bayesian Theorem for Electricity Markets Decision Support. Advances in Intelligent Systems and Computing, 2014, , 141-148.	0.5	1
176	Decision Support System for the Negotiation of Bilateral Contracts in Electricity Markets. Advances in Intelligent Systems and Computing, 2017, , 159-166.	0.5	1
177	Automatic Electricity Markets Data Extraction for Realistic Multi-agent Simulations. Lecture Notes in Computer Science, 2014, , 371-374.	1.0	1
178	Reputation Computational Model to Support Electricity Market Players Energy Contracts Negotiation. Communications in Computer and Information Science, 2018, , 125-133.	0.4	1
179	Multi-agent Systems Society for Power and Energy Systems Simulation. Lecture Notes in Computer Science, 2019, , 126-137.	1.0	1
180	Electricity Markets Portfolio Optimization Using a Particle Swarm Approach. , 2013, , .		O

#	Article	ΙF	Citations
181	On identifying which intermediate nodes should code in multicast networks. , 2013, , .		O
182	Analysis of strategic wind power participation in energy market using MASCEM simulator. , 2015, , .		0
183	Intelligent energy management using CBR: Brazilian residential consumption scenario. , 2016, , .		0
184	Shared intelligence platform for collaborative simulations using sequences of algorithms: An electricity market participation case study. , 2017, , .		0
185	Context analysis in energy resource management residential buildings. , 2017, , .		0
186	Dynamic electricity tariff definition based on market price, consumption and renewable generation patterns., 2018,,.		0
187	Identifying Most Probable Negotiation Scenario in Bilateral Contracts with Reinforcement Learning. Advances in Intelligent Systems and Computing, 2019, , 556-571.	0.5	0
188	Distributed learning of energy contracts negotiation strategies with collaborative reinforcement learning. , 2019, , .		0
189	Adaptive Learning in Electricity Market Negotiations Based on Determinism Theory. IEEE Intelligent Systems, 2020, 35, 62-73.	4.0	0
190	Multiagent Simulation of Demand Flexibility Integration in Local Energy Markets. E3S Web of Conferences, 2021, 239, 00010.	0.2	0
191	Optimisation for Coalitions Formation Considering the Fairness in Flexibility Market Participation. E3S Web of Conferences, 2021, 239, 00016.	0.2	0
192	Demonstration of the Multi-Agent Simulator of Competitive Electricity Markets. Lecture Notes in Computer Science, 2013, , 316-319.	1.0	0
193	Demonstration of ALBidS: Adaptive Learning Strategic Bidding System. Lecture Notes in Computer Science, 2016, , 281-285.	1.0	0
194	Initial Solution Heuristic for Portfolio Optimization of Electricity Markets Participation. Communications in Computer and Information Science, 2017, , 130-142.	0.4	0
195	Decision Support System for the Negotiation of Bilateral Contracts in Electricity Markets. Advances in Intelligent Systems and Computing, 2018, , 305-306.	0.5	0
196	Remuneration and Tariffs in the Context of Virtual Power Players. Advances in Intelligent Systems and Computing, 2018, , 284-286.	0.5	0
197	Tools Control Center to Enable the Joint Simulation of Multi-agent Systems. Advances in Intelligent Systems and Computing, 2018, , 307-308.	0.5	0
198	Decision Support for Agents' Participation in Electricity Markets. Advances in Intelligent Systems and Computing, 2018, , 302-304.	0.5	0

#	Article	IF	CITATIONS
199	Demonstration of Tools Control Center for Multi-agent Energy Systems Simulation. Lecture Notes in Computer Science, 2018, , 353-356.	1.0	0