Luqman Jameel Rather

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1555547/publications.pdf

Version: 2024-02-01

49 papers

1,689 citations

279798 23 h-index 302126 39 g-index

70 all docs

70 docs citations

70 times ranked 876 citing authors

#	Article	IF	Citations
1	Ecological dyeing of Woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants. Journal of Environmental Chemical Engineering, 2016, 4, 3041-3049.	6.7	118
2	Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications – A review. Journal of Advanced Research, 2016, 7, 499-514.	9.5	109
3	Colorful and semi durable antioxidant finish of woolen yarn with tannin rich extract of Acacia nilotica natural dye. Dyes and Pigments, 2017, 139, 812-819.	3.7	97
4	Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustainable Chemistry and Pharmacy, 2015, 2, 12-30.	3.3	89
5	Antimicrobial and fluorescence finishing of woolen yarn with Terminalia arjuna natural dye as an ecofriendly substitute to synthetic antibacterial agents. RSC Advances, 2016, 6, 39080-39094.	3.6	73
6	Study on the application of Acacia nilotica natural dye to wool using fluorescence and FT-IR spectroscopy. Fibers and Polymers, 2015, 16, 1497-1505.	2.1	72
7	Economically viable UV-protective and antioxidant finishing of wool fabric dyed with Tagetes erecta flower extract: Valorization of marigold. Industrial Crops and Products, 2018, 119, 277-282.	5.2	67
8	An eco-friendly dyeing of woolen yarn by Terminalia chebula extract with evaluations of kinetic and adsorption characteristics. Journal of Advanced Research, 2016, 7, 473-482.	9.5	61
9	Application of Terminalia chebula natural dye on wool fiber—evaluation of color and fastness properties. Textiles and Clothing Sustainability, 2017, 2, .	1.2	58
10	Study the effect of ammonia post-treatment on color characteristics of annatto-dyed textile substrate using reflectance spectrophotometery. Industrial Crops and Products, 2014, 59, 337-342.	5.2	57
11	Environmental friendly bioactive finishing of wool textiles using the tannin-rich extracts of Chinese tallow (Sapium sebiferum L.) waste/fallen leaves. Dyes and Pigments, 2020, 176, 108230.	3.7	49
12	Valorization of Natural Dyes Extracted from Mugwort Leaves (<i>Folium artemisiae argyi</i>) for Wool Fabric Dyeing: Optimization of Extraction and Dyeing Processes with Simultaneous Coloration and Biofunctionalization. ACS Sustainable Chemistry and Engineering, 2020, 8, 2822-2834.	6.7	48
13	Agricultural waste of Eriobotrya japonica L. (Loquat) seeds and flora leaves as source of natural dye and bio-mordant for coloration and bio-functional finishing of wool textile. Industrial Crops and Products, 2021, 169, 113633.	5.2	48
14	Recent advances in the surface modification strategies to improve functional finishing of cotton with natural colourants - A review. Journal of Cleaner Production, 2022, 335, 130313.	9.3	46
15	Adsorption and Kinetic studies of Adhatoda vasica natural dye onto woolen yarn with evaluations of Colorimetric and Fluorescence Characteristics. Journal of Environmental Chemical Engineering, 2016, 4, 1780-1796.	6.7	44
16	Natural pigment during flora leaf senescence and its application in dyeing and UV protection finish of silk and wool a case study of Cinnamomum Camphora. Dyes and Pigments, 2019, 166, 114-121.	3.7	42
17	Exploiting the potential of polyphenolic biomordants in environmentally friendly coloration of wool with natural dye from <i>Butea monosperma</i> flower extract. Journal of Natural Fibers, 2019, 16, 512-523.	3.1	42
18	Valorization of Agro-industrial Waste from Peanuts for Sustainable Natural Dye Production: Focus on Adsorption Mechanisms, Ultraviolet Protection, and Antimicrobial Properties of Dyed Wool Fabric. ACS Food Science & Technology, 2021, 1, 427-442.	2.7	41

#	Article	IF	Citations
19	Natural dyeing of merino wool fibers with <i>Cinnamomum camphora</i> leaves extract with mordants of biological origin: a greener approach of textile coloration. Journal of the Textile Institute, 2020, 111, 1038-1046.	1.9	39
20	Mixed Metal Mordant Dyeing of Wool using Root Extract of <i>Rheum emodi </i> (Indian Rhubarb/Dolu). Journal of Natural Fibers, 2015, 12, 243-255.	3.1	35
21	Dyeing studies and fastness properties of brown naphtoquinone colorant extracted from Juglans regia L on natural protein fiber using different metal salt mordants. Textiles and Clothing Sustainability, 2017, 3, .	1.2	33
22	Coloration, UV Protective, and Antioxidant Finishing of Wool Fabric Via Natural Dye Extracts: Cleaner Production of Bioactive Textiles. Environmental Progress and Sustainable Energy, 2019, 38, 13187.	2.3	30
23	Light Fastness and Shade Variability of Tannin Colorant Dyed Wool with the Effect of Mordanting Methods. Journal of Natural Fibers, 2019, 16, 100-113.	3.1	30
24	Chemistry of Plant Dyes: Applications and Environmental Implications of Dyeing Processes. Current Environmental Engineering, 2017, 4, .	0.6	25
25	Simultaneous shade development, antibacterial, and antifungal functionalization of wool using <i>Punica granatum</i> L. Peel extract as a source of textile dye. Journal of Natural Fibers, 2019, 16, 555-566.	3.1	24
26	Instrumental characterization of merino wool fibers dyed with Cinnamomum camphora waste/fallen leaves extract: An efficient waste management alternative. Journal of Cleaner Production, 2020, 273, 123021.	9.3	23
27	First-time application of biomordants in conjunction with the <i>Alkanna tinctoria</i> root extract for eco-friendly wool dyeing. Journal of Natural Fibers, 2019, 16, 846-854.	3.1	22
28	Antibacterial Functionalization and Simultaneous Coloration of Wool Fiber with the Application of Plant-Based Dyes. Journal of Natural Fibers, 2020, 17, 437-449.	3.1	18
29	Bioremediation: Green and Sustainable Technology for Textile Effluent Treatment. Textile Science and Clothing Technology, 2018, , 75-91.	0.5	16
30	<i>Adhatoda vasica</i> in Conjunction with Binary Combinations of Metal Salts and Biomordants as an Effective Textile Dye to Produce novel Shades on Wool. Journal of Natural Fibers, 2018, 15, 611-623.	3.1	16
31	Biomordanting Potential of <i>Acacia nilotica</i> (Babul) in Conjunction with <i>Kerria lacca</i> and <i>Rheum emodi</i> Natural Dyes. Journal of Natural Fibers, 2019, 16, 275-286.	3.1	16
32	Bio colourants from the waste leaves of Ginkgo biloba L. tree: Wool dyeing and antimicrobial functionalization against some antibiotic-resistant bacterial strains. Sustainable Chemistry and Pharmacy, 2022, 25, 100585.	3.3	16
33	Sonochemical mordanting as a green and effective approach in enhancing cotton bio natural dye affinity through soy surface modification. Journal of Cleaner Production, 2022, 336, 130465.	9.3	14
34	First Application of Mix Metallic Salt Mordant Combinations to Develop Newer Shades on Wool with <i>Bixa orellana</i> Natural Dye Using Reflectance Spectroscopy. Journal of Natural Fibers, 2018, 15, 363-372.	3.1	13
35	Advances in the sustainable technologies for water conservation in textile industries. , 2019, , 175-194.		12
36	A review on anticancer applications of pullulan and pullulan derivative nanoparticles. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100115.	2.6	12

#	Article	IF	CITATIONS
37	Re-use of Cinnamomum camphora natural dye generated wastewater for sustainable UV protective and antioxidant finishing of wool fabric: Effect of Fe(II) sulfate. Sustainable Chemistry and Pharmacy, 2021, 21, 100422.	3.3	10
38	Dyeing of Wool with Anthraquinone based Natural Colorants from <i>Cassia fistula</i> fruit. Journal of Natural Fibers, 2019, 16, 855-865.	3.1	9
39	A Study on Optimization of Irradiation Frequency for Ultrasonic Laundry of Textile. Fibers and Polymers, 2021, 22, 1482-1489.	2.1	9
40	Review on Anti-cancer and Anti-microbial Applications of Curdlan Biomaterials. Journal of Polymers and the Environment, 2022, 30, 1284-1299.	5.0	9
41	<i>Terminalia arjuna (i) Dyed Woolen Yarn - Effect of Binary and Ternary Metal Salt Combinations: A Greener Route for Production of Ecofriendly Textiles. Journal of Natural Fibers, 2020, 17, 1693-1705.</i>	3.1	8
42	Effects of Ultrasonic Treatment on Hydrophilicity and Thermal Stability of Silk. Macromolecular Materials and Engineering, 2019, 304, 1900364.	3.6	7
43	Binary mix metal mordant dyeing of merino wool fibers using Cinnamomum camphora waste/fallen leaves extract: a brief statistical analysis of color parameters. Journal of the Textile Institute, 2021, 112, 742-751.	1.9	7
44	Effect of Binary and Ternary Combination of Metal Salt Mordants on Dyeing and Fastness Properties of Natural Protein Fibre with <i>Juglans regia </i> L. Dye. Journal of Natural Fibers, 0, , 1-11.	3.1	6
45	Exploring the Potential of Tannin Based Colorants Towards Functional Value Addition of Wool Textiles. Fibers and Polymers, 2019, 20, 1812-1819.	2.1	5
46	Effect of Binary and Ternary Combination of Metal Salt on Colorimetric and Fastness Characteristics of <i>Acacia Nilotica</i> Dyed Woolen Yarn. Journal of Natural Fibers, 2020, 17, 1171-1183.	3.1	4
47	Natural colorant extraction from <i>Cinnamomum camphora</i> tree leaves of different maturities and its ultrasonicâ€assisted extraction process. Coloration Technology, 2019, 135, 312-321.	1.5	3
48	Bi and Tri Metal Salt Combinations plus Colorants Extracted from Timber Industry Waste as Effective Dyeing Materials to Produce Novel Shades on Wool. Journal of Natural Fibers, 0, , 1-11.	3.1	2
49	Biofunctionalization of Various Textile Materials Using Enzyme Biotechnology as a Green Chemistry Alternative., 2018,, 263-276.		O