
Dimitrios Pantazis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1555381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal dynamics of the neural representation of hue and luminance polarity. Nature Communications, 2022, 13, 661.	12.8	8
2	The Neural Representation of a Repeated Standard Stimulus in Dyslexia. Frontiers in Human Neuroscience, 2022, 16, .	2.0	2
3	Color Space Geometry Uncovered with Magnetoencephalography. Current Biology, 2021, 31, 515-526.e5.	3.9	15
4	A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease Progression With MEG Brain Networks. IEEE Transactions on Biomedical Engineering, 2021, 68, 1579-1588.	4.2	19
5	How expectations of pain elicited by consciously and unconsciously perceived cues unfold over time. Neurolmage, 2021, 235, 117985.	4.2	3
6	Alpha Synchrony and the Neurofeedback Control of Spatial Attention. Neuron, 2020, 105, 577-587.e5.	8.1	90
7	A new Graph Gaussian embedding method for analyzing the effects of cognitive training. PLoS Computational Biology, 2020, 16, e1008186.	3.2	16
8	Thalamocortical inhibitory dynamics support conscious perception. NeuroImage, 2020, 220, 117066.	4.2	7
9	New Cognitive Neurotechnology Facilitates Studies of Cortical–Subcortical Interactions. Trends in Biotechnology, 2020, 38, 952-962.	9.3	15
10	The perceptual neural trace of memorable unseen scenes. Scientific Reports, 2019, 9, 6033.	3.3	27
11	How face perception unfolds over time. Nature Communications, 2019, 10, 1258.	12.8	130
12	MEG/EEG Group Analysis With Brainstorm. Frontiers in Neuroscience, 2019, 13, 76.	2.8	135
13	Decoding the orientation of contrast edges from MEG evoked and induced responses. NeuroImage, 2018, 180, 267-279.	4.2	40
14	Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway. ELife, 2018, 7, .	6.0	86
15	Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage, 2017, 153, 346-358.	4.2	146
16	Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space. Neurolmage, 2017, 158, 441-454.	4.2	98
17	Hearing Scenes: A Neuromagnetic Signature of Auditory Source and Reverberant Space Separation. ENeuro, 2017, 4, ENEURO.0007-17.2017.	1.9	19
18	Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Obiect Recognition. Cerebral Cortex. 2016. 26. 3563-3579.	2.9	138

DIMITRIOS PANTAZIS

#	Article	IF	CITATIONS
19	Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Scientific Reports, 2016, 6, 27755.	3.3	510
20	Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Experimental Brain Research, 2016, 234, 1807-1818.	1.5	42
21	Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans?. Neurolmage, 2015, 121, 193-204.	4.2	80
22	Resolving human object recognition in space and time. Nature Neuroscience, 2014, 17, 455-462.	14.8	654
23	Autism as a disorder of prediction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15220-15225.	7.1	396
24	A note on the phase locking value and its properties. NeuroImage, 2013, 74, 231-244.	4.2	258
25	Using Brain Waves to Control Computers and Machines. Advances in Human-Computer Interaction, 2013, 2013, 1-2.	2.8	7
26	Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Computational Intelligence and Neuroscience, 2011, 2011, 1-13.	1.7	2,564
27	Structural analysis of the cerebral cortex using blind source separation. , 2011, , .		0
28	Visual phonetic processing localized using speech and nonspeech face gestures in video and pointâ€light displays. Human Brain Mapping, 2011, 32, 1660-1676.	3.6	48
29	Partitioning directed graphs based on modularity and information flow. , 2011, , .		3
30	Dynamic Activation of Frontal, Parietal, and Sensory Regions Underlying Anticipatory Visual Spatial Attention. Journal of Neuroscience, 2011, 31, 13880-13889.	3.6	64
31	Statistically optimal graph partition method based on modularity. , 2010, , .		4
32	Statistically optimal modular partitioning of directed graphs. , 2010, , .		4
33	Comparison of landmark-based and automatic methods for cortical surface registration. NeuroImage, 2010, 49, 2479-2493.	4.2	121
34	Identifying true cortical interactions in MEG using the nulling beamformer. NeuroImage, 2010, 49, 3161-3174.	4.2	78
35	A novel ANCOVA design for analysis of MEG data with application to a visual attention studyâ`†. NeuroImage, 2009, 44, 164-174.	4.2	19
36	EXPLORING HUMAN VISUAL ATTENTION IN AN MEG STUDY OF A SPATIAL CUEING PARADIGM USING A NOVEL ANCOVA DESIGN. , 2007, , .		2

DIMITRIOS PANTAZIS

#	Article	IF	CITATIONS
37	Coherent neural representation of hand speed in humans revealed by MEG imaging. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7676-7681.	7.1	252
38	A comparison of random field theory and permutation methods for the statistical analysis of MEG data. NeuroImage, 2005, 25, 383-394.	4.2	191
39	Boundary and medial shape analysis of the hippocampus in schizophrenia. Medical Image Analysis, 2004, 8, 197-203.	11.6	224
40	Spatiotemporal Localization of Significant Activation in MEG Using Permutation Tests. Lecture Notes in Computer Science, 2003, 18, 512-523.	1.3	26