
## Tychele N Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1555260/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Excess of rare, inherited truncating mutations in autism. Nature Genetics, 2015, 47, 582-588.                                                                 | 9.4  | 531       |
| 2  | Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature Genetics, 2017, 49, 515-526. | 9.4  | 443       |
| 3  | Genomic Patterns of De Novo Mutation in Simplex Autism. Cell, 2017, 171, 710-722.e12.                                                                         | 13.5 | 308       |
| 4  | De novo genic mutations among a Chinese autism spectrum disorder cohort. Nature Communications, 2016, 7, 13316.                                               | 5.8  | 293       |
| 5  | Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA. American Journal of Human Genetics, 2016, 98, 58-74.   | 2.6  | 248       |
| 6  | denovo-db: a compendium of human <i>de novo</i> variants. Nucleic Acids Research, 2017, 45, D804-D811.                                                        | 6.5  | 173       |
| 7  | Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. Npj<br>Genomic Medicine, 2019, 4, 19.                       | 1.7  | 163       |
| 8  | Single-cell epigenomics reveals mechanisms of human cortical development. Nature, 2021, 598, 205-213.                                                         | 13.7 | 154       |
| 9  | Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains.<br>Nature Neuroscience, 2017, 20, 1043-1051.                 | 7.1  | 152       |
| 10 | Loss of Î-catenin function in severe autism. Nature, 2015, 520, 51-56.                                                                                        | 13.7 | 145       |
| 11 | Molecular Genetic Anatomy and Risk Profile of Hirschsprung's Disease. New England Journal of<br>Medicine, 2019, 380, 1421-1432.                               | 13.9 | 131       |
| 12 | Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications.<br>Genome Medicine, 2017, 9, 101.                          | 3.6  | 112       |
| 13 | Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nature<br>Communications, 2020, 11, 4932.                             | 5.8  | 105       |
| 14 | Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genetics in Medicine, 2019, 21, 1611-1620.         | 1.1  | 88        |
| 15 | Sex-Based Analysis of De Novo Variants in Neurodevelopmental Disorders. American Journal of Human<br>Genetics, 2019, 105, 1274-1285.                          | 2.6  | 84        |
| 16 | Recent ultra-rare inherited variants implicate new autism candidate risk genes. Nature Genetics, 2021, 53, 1125-1134.                                         | 9.4  | 68        |
| 17 | The Role of De Novo Noncoding Regulatory Mutations in Neurodevelopmental Disorders. Trends in Neurosciences, 2019, 42, 115-127.                               | 4.2  | 56        |
| 18 | Clinical phenotype of ASD-associated DYRK1A haploinsufficiency. Molecular Autism, 2017, 8, 54.                                                                | 2.6  | 55        |

TYCHELE N TURNER

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The autism spectrum phenotype in ADNP syndrome. Autism Research, 2018, 11, 1300-1310.                                                                                                                                                | 2.1 | 49        |
| 20 | Revealing rateâ€limiting steps in complex disease biology: The crucial importance of studying rare,<br>extremeâ€phenotype families. BioEssays, 2016, 38, 578-586.                                                                    | 1.2 | 47        |
| 21 | Proteins linked to autosomal dominant and autosomal recessive disorders harbor characteristic rare missense mutation distribution patterns. Human Molecular Genetics, 2015, 24, 5995-6002.                                           | 1.4 | 40        |
| 22 | Clinical Phenotypes of Carriers of Mutations in CHD8 or Its Conserved Target Genes. Biological Psychiatry, 2020, 87, 123-131.                                                                                                        | 0.7 | 22        |
| 23 | Thousands of high-quality sequencing samples fail to show meaningful correlation between 5S and 45S ribosomal DNA arrays in humans. Scientific Reports, 2021, 11, 449.                                                               | 1.6 | 19        |
| 24 | Molecular subtyping and improved treatment of neurodevelopmental disease. Genome Medicine, 2016,<br>8, 22.                                                                                                                           | 3.6 | 17        |
| 25 | Rare and de novo coding variants in chromodomain genes in Chiari I malformation. American Journal<br>of Human Genetics, 2021, 108, 100-114.                                                                                          | 2.6 | 17        |
| 26 | Coding and noncoding variants in EBF3 are involved in HADDS and simplex autism. Human Genomics, 2021, 15, 44.                                                                                                                        | 1.4 | 16        |
| 27 | Altered neuronal physiology, development, and function associated with a common chromosome 15 duplication involving CHRNA7. BMC Biology, 2021, 19, 147.                                                                              | 1.7 | 9         |
| 28 | From karyotypes to precision genomics in 9p deletion and duplication syndromes. Human Genetics and<br>Genomics Advances, 2022, 3, 100081.                                                                                            | 1.0 | 9         |
| 29 | Comorbid symptoms of inattention, autism, and executive cognition in youth with putative genetic risk. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 268-276.                                         | 3.1 | 8         |
| 30 | Germline mosaicism of a missense variant in <scp><i>KCNC2</i></scp> in a multiplex family with autism<br>and epilepsy characterized by longâ€read sequencing. American Journal of Medical Genetics, Part A, 2022,<br>188, 2071-2081. | 0.7 | 7         |
| 31 | Differences in the number of de novo mutations between individuals are due to small family-specific effects and stochasticity. Genome Research, 2021, 31, 1513-1518.                                                                 | 2.4 | 6         |
| 32 | Precise breakpoint detection in a patient with 9p– syndrome. Journal of Physical Education and Sports<br>Management, 2020, 6, a005348.                                                                                               | 0.5 | 4         |
| 33 | Familial Lipomas Without Classic Neurofibromatosis-1 Caused by a Missense Germline NF1 Mutation.<br>Neurology: Genetics, 2021, 7, e582.                                                                                              | 0.9 | 3         |
| 34 | Ancestry adjustment improves genome-wide estimates of regional intolerance. Genetics, 2022, , .                                                                                                                                      | 1.2 | 2         |
| 35 | Genetic counseling as preventive intervention: toward individual specification of transgenerational autism risk. Journal of Neurodevelopmental Disorders, 2021, 13, 39.                                                              | 1.5 | 1         |
| 36 | Large-Scale Population-Based Assessment of Psychiatric Comorbidities in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2019, 86, e25-e27.                                             | 0.7 | 0         |

| #  | Article                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | ACES: Analysis of Conservation with an Extensive list of Species. Bioinformatics, 2021, 37, 3920-3922. | 1.8 | Ο         |
| 38 | Genetic etiologies of autism: Unpacking pathogenic mechanisms and characteristics. , 2022, , 197-213.  |     | 0         |