
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1554908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aqueous outflow channels and its lymphatic association: A review. Survey of Ophthalmology, 2022, 67, 659-674.	4.0	3
2	PROX1, a Key Mediator of the Anti-Proliferative Effect of Rapamycin on Hepatocellular Carcinoma Cells. Cells, 2022, 11, 446.	4.1	3
3	VE-Cadherin: A Critical Sticking Point for Lymphatic System Maintenance: Role of VE-Cadherin in Lymphatic Maintenance. Circulation Research, 2022, 130, 24-26.	4.5	5
4	Dose–response relationship of pulmonary disorders by inhalation exposure to cross-linked water-soluble acrylic acid polymers in F344 rats. Particle and Fibre Toxicology, 2022, 19, 27.	6.2	9
5	Perfusable micro-vascularized 3D tissue array for high-throughput vascular phenotypic screening. Nano Convergence, 2022, 9, 16.	12.1	28
6	Pro-resolving lipid mediators in traumatic brain injury: emerging concepts and translational approach American Journal of Translational Research (discontinued), 2022, 14, 1482-1494.	0.0	0
7	Piezo1-Regulated Mechanotransduction Controls Flow-Activated Lymphatic Expansion. Circulation Research, 2022, 131, .	4.5	16
8	Aqueous humour outflow imaging: seeing is believing. Eye, 2021, 35, 202-215.	2.1	12
9	From Bench to Bedside: The Role of a Multidisciplinary Approach to Treating Patients with Lymphedema. Lymphatic Research and Biology, 2021, 19, 11-16.	1.1	2
10	Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor–mediated lymphangiogenesis. Journal of Clinical Investigation, 2021, 131, .	8.2	23
11	Terminating Cancer by Blocking VISTA as a Novel Immunotherapy: Hasta la vista, baby. Frontiers in Oncology, 2021, 11, 658488.	2.8	17
12	Serial intravital imaging captures dynamic and functional endothelial remodeling with single-cell resolution. JCI Insight, 2021, 6, .	5.0	12
13	Structural Confirmation of Lymphatic Outflow from Subconjunctival Blebs of LiveÂHumans. Ophthalmology Science, 2021, 1, 100080.	2.5	8
14	Prevention of postsurgical lymphedema via immediate delivery of sustainedâ€release 9â€cis retinoic acid to the lymphedenectomy site. Journal of Surgical Oncology, 2020, 121, 100-108.	1.7	11
15	Ischemia and reperfusion injury in superficial inferior epigastric artery-based vascularized lymph node flaps. PLoS ONE, 2020, 15, e0227599.	2.5	8
16	Lymphatic Proliferation Ameliorates Pulmonary Fibrosis after Lung Injury. American Journal of Pathology, 2020, 190, 2355-2375.	3.8	21
17	Ras Pathways on Prox1 and Lymphangiogenesis: Insights for Therapeutics. Frontiers in Cardiovascular Medicine, 2020, 7, 597374.	2.4	23
18	The Lymphatic Cell Environment Promotes Kaposi Sarcoma Development by Prox1-Enhanced Productive Lytic Replication of Kaposi Sarcoma Herpes Virus. Cancer Research, 2020, 80, 3130-3144.	0.9	11

#	Article	IF	CITATIONS
19	Organogenesis and distribution of the ocular lymphatic vessels in the anterior eye. JCI Insight, 2020, 5,	5.0	27
20	Title is missing!. , 2020, 15, e0227599.		0
21	Title is missing!. , 2020, 15, e0227599.		0
22	Title is missing!. , 2020, 15, e0227599.		0
23	Title is missing!. , 2020, 15, e0227599.		0
24	Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019, 572, 62-66.	27.8	445
25	Small Peptide Modulation of Fibroblast Growth Factor Receptor 3-Dependent Postnatal Lymphangiogenesis. Lymphatic Research and Biology, 2019, 17, 19-29.	1.1	10
26	Mesenchymal Stromal Cells Isolated from Irradiated Human Skin Have Diminished Capacity for Proliferation, Differentiation, Colony Formation, and Paracrine Stimulation. Stem Cells Translational Medicine, 2019, 8, 925-934.	3.3	7
27	GATA2 controls lymphatic endothelial cell junctional integrity and lymphovenous valve morphogenesis through <i>miR-126</i> . Development (Cambridge), 2019, 146, .	2.5	30
28	A Pre-clinical Animal Model of Secondary Head and Neck Lymphedema. Scientific Reports, 2019, 9, 18264.	3.3	8
29	YAP and TAZ Negatively Regulate Prox1 During Developmental and Pathologic Lymphangiogenesis. Circulation Research, 2019, 124, 225-242.	4.5	67
30	Postnatal development of lymphatic vasculature in the brain meninges. Developmental Dynamics, 2018, 247, 741-753.	1.8	43
31	Lymphatic exosomes promote dendritic cell migration along guidance cues. Journal of Cell Biology, 2018, 217, 2205-2221.	5.2	57
32	Deregulation of HDAC5 by Viral Interferon Regulatory Factor 3 Plays an Essential Role in Kaposi's Sarcoma-Associated Herpesvirus-Induced Lymphangiogenesis. MBio, 2018, 9, .	4.1	18
33	Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1298-1303.	7.1	85
34	Advances in Renal Cell Imaging. Seminars in Nephrology, 2018, 38, 52-62.	1.6	19
35	Endothelial lineage-specific interaction of Mycobacterium tuberculosis with the blood and lymphatic systems. Tuberculosis, 2018, 111, 1-7.	1.9	6
36	Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/l²-Catenin Signaling. Cell Reports, 2018, 25, 571-584.e5.	6.4	55

#	Article	IF	CITATIONS
37	Exosomes as a Communication Tool Between the Lymphatic System and Bladder Cancer. International Neurourology Journal, 2018, 22, 220-224.	1.2	13
38	Toward inÂvivo two-photon analysis of mouse aqueous outflow structure and function. Experimental Eye Research, 2017, 158, 161-170.	2.6	5
39	ORAI1 Activates Proliferation of Lymphatic Endothelial Cells in Response to Laminar Flow Through Krüppel-Like Factors 2 and 4. Circulation Research, 2017, 120, 1426-1439.	4.5	55
40	Topical Fibronectin Improves Wound Healing of Irradiated Skin. Scientific Reports, 2017, 7, 3876.	3.3	33
41	Development and Characterization of A Novel Prox1-EGFP Lymphatic and Schlemm's Canal Reporter Rat. Scientific Reports, 2017, 7, 5577.	3.3	45
42	Deep tissue analysis of distal aqueous drainage structures and contractile features. Scientific Reports, 2017, 7, 17071.	3.3	31
43	Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell, 2017, 21, 78-90.e6.	11.1	280
44	Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. Journal of Clinical Investigation, 2017, 127, 3877-3896.	8.2	98
45	DeepCAGE transcriptomics identify HOXD10 as transcription factor regulating lymphatic endothelial responses to VEGF-C. Journal of Cell Science, 2016, 129, 2573-85.	2.0	15
46	Limited versus total epithelial debridement ocular surface injury: Live fluorescence imaging of hemangiogenesis and lymphangiogenesis in Prox1-GFP/Flk1::Myr-mCherry mice. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2148-2156.	2.4	11
47	Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells. Cancer Research, 2016, 76, 582-593.	0.9	39
48	Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1. Lipids in Health and Disease, 2016, 15, 41.	3.0	14
49	Efficient Assessment of Developmental, Surgical and Pathological Lymphangiogenesis Using a Lymphatic Reporter Mouse and Its Embryonic Stem Cells. PLoS ONE, 2016, 11, e0157126.	2.5	26
50	DeepCAGE Transcriptomics Reveal an Important Role of the Transcription Factor MAFB in the Lymphatic Endothelium. Cell Reports, 2015, 13, 1493-1504.	6.4	46
51	Prox1 expression in the endolymphatic sac revealed by whole-mount fluorescent imaging of Prox1-GFP transgenic mice. Biochemical and Biophysical Research Communications, 2015, 457, 19-22.	2.1	2
52	Simultaneous <i>inÂvivo</i> imaging of blood and lymphatic vessel growth in Prox1– <scp>GFP</scp> /Flk1::myr–mCherry mice. FEBS Journal, 2015, 282, 1458-1467.	4.7	24
53	Preferential Lymphatic Growth in Bronchus-Associated Lymphoid Tissue in Sustained Lung Inflammation. American Journal of Pathology, 2014, 184, 1577-1592.	3.8	43
54	Thrombospondin-2 overexpression in the skin of transgenic mice reduces the susceptibility to chemically induced multistep skin carcinogenesis. Journal of Dermatological Science, 2014, 74, 106-115.	1.9	15

#	Article	IF	CITATIONS
55	Lymphatic regulator PROX1 determines Schlemm's canal integrity and identity. Journal of Clinical Investigation, 2014, 124, 3960-3974.	8.2	141
56	Novel Characterization and Live Imaging of Schlemm's Canal Expressing Prox-1. PLoS ONE, 2014, 9, e98245.	2.5	62
57	Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse. Blood, 2011, 117, 362-365.	1.4	223
58	Novel Discovery of LYVE-1 Expression in the Hyaloid Vascular System. , 2010, 51, 6157.		20
59	Molecular Control of Lymphatic System Development. , 0, , 1553-1567.		0