Anna M MaroÅ,,

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1554752/publications.pdf

Version: 2024-02-01

687363 713466 38 499 13 21 citations h-index g-index papers 38 38 38 701 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Indium(II) Chloride as a Precursor in the Synthesis of Ternary (Ag–In–S) and Quaternary (Ag–In–Zn–S) Nanocrystals. Chemistry of Materials, 2022, 34, 809-825.	6.7	7
2	Effect of carbazole and pyrrolidine functionalization of phenanthroline ligand on ground- and excited-state properties of rhenium(I) complexes. Interplay between 3MLCT and 3IL/3ILCT. Dyes and Pigments, 2022, 200, 110113.	3.7	3
3	Carbazole effect on ground- and excited-state properties of rhenium(<scp>i</scp>) carbonyl complexes with extended <i>terpy</i> -like ligands. Dalton Transactions, 2021, 50, 3943-3958.	3.3	11
4	Ground- and excited-state properties of Re(I) carbonyl complexes – Effect of triimine ligand core and appended heteroaromatic groups. Dyes and Pigments, 2021, 192, 109472.	3.7	7
5	In-Depth Studies of Ground- and Excited-State Properties of Re(I) Carbonyl Complexes Bearing 2,2′:6′,2″-Terpyridine and 2,6-Bis(pyrazin-2-yl)pyridine Coupled with π-Conjugated Aryl Chromophores. Inorganic Chemistry, 2021, 60, 18726-18738.	4.0	10
6	Towards better understanding of the photophysics of platinum(<scp>ii</scp>) coordination compounds with anthracene- and pyrene-substituted 2,6-bis(thiazol-2-yl)pyridines. Dalton Transactions, 2020, 49, 13440-13448.	3.3	5
7	From Red to Green Luminescence via Surface Functionalization. Effect of 2-(5-Mercaptothien-2-yl)-8-(thien-2-yl)-5-hexylthieno[3,4- <i></i>)]pyrrole-4,6-dione Ligands on the Photoluminescence of Alloyed Ag–In–Zn–S Nanocrystals. Inorganic Chemistry, 2020, 59, 14594-14604.	4.0	5
8	Photoluminescence enhancement of Re(<scp>i</scp>) carbonyl complexes bearing D–A and D–π–A ligands. Dalton Transactions, 2020, 49, 4441-4453.	3.3	20
9	Platinum(<scp>ii</scp>) complexes showing high cytotoxicity toward A2780 ovarian carcinoma cells. Dalton Transactions, 2019, 48, 13081-13093.	3.3	19
10	Platinum(II) coordination compounds with $4\hat{a}\in^2$ -pyridyl functionalized $2,2\hat{a}\in^2$: $6\hat{a}\in^2,2\hat{a}\in^3$ -terpyridines as an alternative to enhanced chemotherapy efficacy and reduced side-effects. Journal of Inorganic Biochemistry, 2019, 201, 110809.	3.5	12
11	Aryl substituted 2,6-di(thiazol-2-yl)pyridines –excited-state characterization and potential for OLEDs. Dyes and Pigments, 2019, 169, 89-104.	3.7	12
12	Phenothiazine derivatives - synthesis, characterization, and theoretical studies with an emphasis on the solvatochromic properties. Journal of Molecular Liquids, 2019, 285, 515-525.	4.9	31
13	Fluorene vs carbazole substituent at quinoline core toward organic electronics. Dyes and Pigments, 2019, 166, 98-106.	3.7	24
14	Luminescent NˆCˆN cyclometalated iridium(III) acetylide complexes with fluorene and carbazole motifs. Journal of Luminescence, 2019, 211, 446-456.	3.1	3
15	Does the length matter? - Synthesis, photophysical, and theoretical study of novel quinolines based on carbazoles with different length of alkyl chain. Dyes and Pigments, 2019, 160, 604-613.	3.7	28
16	Cyclometalated alkynylgold(III) complexes of 2-phenylpyridine and 2-(p-tolyl)-pyridine – Synthesis, photophysical and electroluminescence properties. Journal of Luminescence, 2018, 198, 251-259.	3.1	2
17	Spectroscopy, electrochemistry and antiproliferative properties of Au(<scp>iii</scp>), Pt(<scp>ii</scp>) and Cu(<scp>ii</scp>) complexes bearing modified 2,2′:6′,2′′-terpyridine ligands. Da Transactions, 2018, 47, 6444-6463.	a ta n	37
18	Luminescent‧ubstituted Fluoranthenesâ€"Synthesis, Structure, Electrochemistry, and Optical Properties. Chemistry - A European Journal, 2018, 24, 9622-9631.	3.3	10

#	Article	IF	CITATIONS
19	Chloride Platinum(II) Coordination Compounds with4'â€Substituted Terpirydine Ligands as Donorâ€Acceptorâ€Donor Systems ―Structural, Electrochemical and Luminescence Studies ChemistrySelect, 2017, 2, 1071-1078.	1.5	2
20	Interactions of amino acids with aluminum octacarboxyphthalocyanine hydroxide. Experimental and DFT studies. Journal of Molecular Modeling, 2017, 23, 51.	1.8	4
21	Luminescence properties of copper(I), zinc(II) and cadmium(II) coordination compounds with picoline ligands. Journal of Luminescence, 2017, 186, 127-134.	3.1	8
22	Comprehensive exploration of the optical and biological properties of new quinoline based cellular probes. Dyes and Pigments, 2017, 144, 119-132.	3.7	23
23	2,2′:6′,2′â€₹erpyridine Analogues: Structural, Electrochemical, and Photophysical Properties of 2,6â€Di(thiazolâ€2â€yl)pyridine Derivatives. European Journal of Organic Chemistry, 2017, 2017, 2730-2745.	2.4	19
24	NCNâ€Coordinating Ligands based on Pyrene Structure with Potential Application in Organic Electronics. Chemistry - A European Journal, 2017, 23, 15746-15758.	3.3	25
25	Thiocyanate cadmium(II) coordination compounds with 2,3,5,6-tetrakis(2-pyridyl)pyrazine – Synthesis, structure and luminescent properties. Polyhedron, 2017, 135, 109-120.	2.2	23
26	Cyanate cadmium(II) coordination compounds with 2,3,5,6-tetrakis(2-pyridyl)pyrazine – Synthesis, structure and luminescent properties. Journal of Luminescence, 2017, 192, 713-719.	3.1	8
27	Tuning the photophysical properties of 4′-substituted terpyridines – an experimental and theoretical study. Organic and Biomolecular Chemistry, 2016, 14, 3793-3808.	2.8	46
28	Luminescence properties of palladium(II) phenanthroline derivative coordination compounds. ChemistrySelect, 2016, 1, 798-804.	1.5	8
29	Small Donor–Acceptor Molecules Based on a Quinoline–Fluorene System with Promising Photovoltaic Properties. European Journal of Organic Chemistry, 2016, 2016, 2500-2508.	2.4	25
30	Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands. Journal of Luminescence, 2015, 161, 382-388.	3.1	6
31	Phosphorescence of a ruthenium(II) hydride-carbonyl complex with 3-hydroxy-2-quinoxalinecarboxylic acid as a co-ligand. Mendeleev Communications, 2015, 25, 103-105.	1.6	11
32	Aryldiazenido ruthenium(II) complexes. Structure and characterization of p-tolyldiazenido carbonyl-ruthenium(II) coordination compound and its reaction with pyrazole and pyridine. Polyhedron, 2014, 81, 196-202.	2.2	2
33	A copper(I) phosphine complex with 5,7-dinitro-2-methylquinolin-8-ol as co-ligand. Transition Metal Chemistry, 2014, 39, 755-762.	1.4	7
34	Spectroscopic characterization of chloride and pseudohalide ruthenium(II) complexes with 4-(4-nitrobenzyl)pyridine. Transition Metal Chemistry, 2014, 39, 831-841.	1.4	3
35	Synthesis and spectroscopic characterization of a hydride carbonyl ruthenium(II) complex with 2-methyl-4(5)nitroimidazole as a co-ligand. Polyhedron, 2013, 55, 18-23.	2.2	4
36	Synthesis, crystal, molecular, and electronic structures of hydride carbonyl ruthenium(II) complexes with pseudohalide ligands. Transition Metal Chemistry, 2013, 38, 419-428.	1.4	1

#	Article	IF	CITATIONS
37	Ruthenium(II) complexes with quinoline carboxylate as a co-ligand. Polyhedron, 2013, 62, 188-202.	2.2	4
38	Spectroscopic, structure and DFT studies of palladium(II) complexes with pyridine-type ligands. Transition Metal Chemistry, 2011, 36, 297-305.	1.4	24