Epaminondas Mastorakos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1554736/publications.pdf

Version: 2024-02-01

230 papers

9,096 citations

51 h-index 85 g-index

235 all docs

235 docs citations

times ranked

235

2778 citing authors

#	Article	IF	CITATIONS
1	Ignition of turbulent non-premixed flames. Progress in Energy and Combustion Science, 2009, 35, 57-97.	15.8	576
2	Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combustion and Flame, 2005, 143, 37-55.	2.8	467
3	Numerical simulations of autoignition in turbulent mixing flows. Combustion and Flame, 1997, 109, 198-223.	2.8	311
4	Spatially resolved heat release rate measurements in turbulent premixed flames. Combustion and Flame, 2006, 144, 1-16.	2.8	258
5	The role of particle collisions in pneumatic transport. Journal of Fluid Mechanics, 1991, 231, 345-359.	1.4	206
6	An algorithm for the construction of global reduced mechanisms with CSP data. Combustion and Flame, 1999, 117, 685-708.	2.8	180
7	Spark ignition of lifted turbulent jet flames. Combustion and Flame, 2006, 146, 215-231.	2.8	174
8	An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proceedings of the Combustion Institute, 2005, 30, 883-891.	2.4	160
9	Spark ignition of turbulent nonpremixed bluff-body flames. Combustion and Flame, 2007, 151, 366-385.	2.8	153
10	Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combustion and Flame, 2008, 155, 181-195.	2.8	137
11	Measurements in turbulent premixed bluff body flames close to blow-off. Combustion and Flame, 2012, 159, 2589-2607.	2.8	129
12	A Comparison of the Blow-Off Behaviour of Swirl-Stabilized Premixed, Non-Premixed and Spray Flames. Flow, Turbulence and Combustion, 2013, 91, 347-372.	1.4	129
13	Hydrogen production from rich combustion in porous media. International Journal of Hydrogen Energy, 2005, 30, 579-592.	3.8	122
14	Simulations of spray autoignition and flame establishment with two-dimensional CMC. Combustion and Flame, 2005, 143, 402-419.	2.8	117
15	Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks. Combustion and Flame, 2009, 156, 166-180.	2.8	116
16	Investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combustion and Flame, 2006, 146, 419-436.	2.8	110
17	Extinction of turbulent counterflow flames with reactants diluted by hot products. Combustion and Flame, 1995, 102, 101-114.	2.8	109
18	Forced ignition of turbulent spray flames. Proceedings of the Combustion Institute, 2017, 36, 2367-2383.	2.4	109

#	Article	lF	Citations
19	Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure. Combustion and Flame, 2009, 156, 2328-2345.	2.8	108
20	Complex chemistry DNS of n-heptane spray autoignition at high pressure and intermediate temperature conditions. Combustion and Flame, 2013, 160, 1254-1275.	2.8	97
21	CFD predictions for cement kilns including flame modelling, heat transfer and clinker chemistry. Applied Mathematical Modelling, 1999, 23, 55-76.	2.2	94
22	Simulations of laminar flame propagation in droplet mists. Combustion and Flame, 2009, 156, 1627-1640.	2.8	89
23	Measurements of ignition probability in turbulent non-premixed counterflow flames. Proceedings of the Combustion Institute, 2007, 31, 1507-1513.	2.4	86
24	Capturing localised extinction in Sandia Flame F with LES–CMC. Proceedings of the Combustion Institute, 2011, 33, 1673-1680.	2.4	85
25	EFFECTS OF TURBULENCE ON SPARK IGNITION IN INHOMOGENEOUS MIXTURES: A DIRECT NUMERICAL SIMULATION (DNS) STUDY. Combustion Science and Technology, 2007, 179, 293-317.	1.2	81
26	Visualization of blow-off events in bluff-body stabilized turbulent premixed flames. Proceedings of the Combustion Institute, 2011, 33, 1559-1566.	2.4	81
27	DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combustion and Flame, 2010, 157, 1071-1086.	2.8	79
28	Heat release imaging in turbulent premixed methane–air flames close to blow-off. Proceedings of the Combustion Institute, 2015, 35, 1443-1450.	2.4	79
29	Direct numerical simulations of autoignition in turbulent two-phase flows. Proceedings of the Combustion Institute, 2009, 32, 2275-2282.	2.4	78
30	Spark ignition of turbulent recirculating non-premixed gas and spray flames: A model for predicting ignition probability. Combustion and Flame, 2012, 159, 1503-1522.	2.8	78
31	Extinction and temperature characteristics of turbulent counterflow diffusion flames with partial premixing. Combustion and Flame, 1992, 91, 40-54.	2.8	77
32	Second-order conditional moment closure for the autoignition of turbulent flows. Physics of Fluids, 1998, 10, 1246-1248.	1.6	75
33	Modeling evaporation effects in conditional moment closure for spray autoignition. Combustion Theory and Modelling, 2011, 15, 725-752.	1.0	74
34	Soot Formation Modeling of <i>n </i> -Heptane Sprays Under Diesel Engine Conditions Using the Conditional Moment Closure Approach. Combustion Science and Technology, 2013, 185, 766-793.	1.2	73
35	Pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure. Fuel, 2018, 230, 274-281.	3.4	73
36	Direct numerical simulations of turbulent flame expansion in fine sprays. Proceedings of the Combustion Institute, 2009, 32, 2283-2290.	2.4	71

#	Article	IF	CITATIONS
37	Detailed chemistry LES/CMC simulation of a swirling ethanol spray flame approaching blow-off. Proceedings of the Combustion Institute, 2017, 36, 2625-2632.	2.4	71
38	Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200584.	1.0	71
39	LES/CMC of Blow-off in a Liquid Fueled Swirl Burner. Flow, Turbulence and Combustion, 2014, 92, 237-267.	1.4	70
40	Diesel Engine Simulations with Multi-Dimensional Conditional Moment Closure. Combustion Science and Technology, 2008, 180, 883-899.	1.2	69
41	Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data. Combustion Theory and Modelling, 1999, 3, 233-257.	1.0	69
42	Experiments and Simulations of n-Heptane Spray Auto-Ignition in a Closed Combustion Chamber at Diesel Engine Conditions. Flow, Turbulence and Combustion, 2010, 84, 49-78.	1.4	68
43	Heat release rate as represented by [OH] \tilde{A} — [CH $<$ sub $>$ 2 $<$ /sub $>$ O] and its role in autoignition. Combustion Theory and Modelling, 2009, 13, 645-670.	1.0	67
44	Simulations of premixed combustion in porous media. Combustion Theory and Modelling, 2002, 6, 383-411.	1.0	63
45	Implementation Issues of the Conditional Moment Closure Model in Large Eddy Simulations. Flow, Turbulence and Combustion, 2010, 84, 481-512.	1.4	62
46	Visualization of MILD combustion from jets in cross-flow. Proceedings of the Combustion Institute, 2015, 35, 3537-3545.	2.4	61
47	Direct Numerical Simulations of Localised Forced Ignition in Turbulent Mixing Layers: The Effects of Mixture Fraction and Its Gradient. Flow, Turbulence and Combustion, 2008, 80, 155-186.	1.4	60
48	Chaos in an imperfectly premixed model combustor. Chaos, 2015, 25, 023101.	1.0	59
49	Investigations on the self-excited oscillations in a kerosene spray flame. Combustion and Flame, 2009, 156, 374-384.	2.8	58
50	The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Combustion and Flame, 2012, 159, 641-664.	2.8	58
51	Comparison of automatic reduction procedures for ignition chemistry. Proceedings of the Combustion Institute, 2002, 29, 1387-1393.	2.4	56
52	Influence of turbulence–chemistry interaction for <i>n</i> heptane spray combustion under diesel engine conditions with emphasis on soot formation and oxidation. Combustion Theory and Modelling, 2014, 18, 330-360.	1.0	55
53	Experimental and Numerical Investigation into the Propagation of Entropy Waves. AIAA Journal, 2017, 55, 446-458.	1.5	54
54	Direct Numerical Simulations of premixed methane flame initiation by pilot n-heptane spray autoignition. Combustion and Flame, 2016, 163, 122-137.	2.8	53

#	Article	IF	CITATIONS
55	Experimental investigation on spark ignition of annular premixed combustors. Combustion and Flame, 2017, 178, 148-157.	2.8	52
56	Large Eddy Simulation/Conditional Moment Closure modeling of swirl-stabilized non-premixed flames with local extinction. Proceedings of the Combustion Institute, 2015, 35, 1167-1174.	2.4	50
57	Fundamental Aspects of Jet Ignition for Natural Gas Engines. SAE International Journal of Engines, 0, 10, 2429-2438.	0.4	50
58	Reduced chemical mechanisms for atmospheric pollution using Computational Singular Perturbation analysis. Atmospheric Environment, 2004, 38, 3661-3673.	1.9	49
59	Measurements and simulations of mixing and autoignition of an n-heptane plume in a turbulent flow of heated air. Experimental Thermal and Fluid Science, 2007, 31, 393-401.	1.5	49
60	Reaction zone visualisation in swirling spray n-heptane flames. Proceedings of the Combustion Institute, 2015, 35, 1649-1656.	2.4	49
61	Simulations of turbulent lifted jet flames with two-dimensional conditional moment closure. Proceedings of the Combustion Institute, 2005, 30, 911-918.	2.4	48
62	Simulations of the dispersion of reactive pollutants in a street canyon, considering different chemical mechanisms and micromixing. Atmospheric Environment, 2009, 43, 4670-4680.	1.9	48
63	Scalar dissipation rate at the extinction of turbulent counterflow nonpremixed flames. Combustion and Flame, 1992, 91, 55-64.	2.8	47
64	Numerical investigation of edge flame propagation characteristics in turbulent mixing layers. Physics of Fluids, 2006, 18, 105103.	1.6	47
65	NUMERICAL INVESTIGATION OF FORCED IGNITION IN LAMINAR COUNTERFLOW NON-PREMIXED METHANE-AIR FLAMES. Combustion Science and Technology, 2007, 179, 21-37.	1.2	47
66	Experimental Investigation of the Effects of Turbulence and Mixing on Autoignition Chemistry. Flow, Turbulence and Combustion, 2011, 86, 585-608.	1.4	47
67	Prediction of Global Extinction Conditions and Dynamics in Swirling Non-premixed Flames Using LES/CMC Modelling. Flow, Turbulence and Combustion, 2016, 96, 863-889.	1.4	47
68	Complex chemistry simulations of spark ignition in turbulent sprays. Proceedings of the Combustion Institute, 2011, 33, 2135-2142.	2.4	46
69	H ₂ /air autoignition: The nature and interaction of the developing explosive modes. Combustion Theory and Modelling, 2015, 19, 382-433.	1.0	46
70	Spark ignition of annular non-premixed combustors. Experimental Thermal and Fluid Science, 2016, 73, 64-70.	1.5	46
71	Turbulent Combustion Modelling and Experiments: Recent Trends and Developments. Flow, Turbulence and Combustion, 2019, 103, 847-869.	1.4	46
72	Statistics of relative and absolute velocities of turbulent non-premixed edge flames following spark ignition. Proceedings of the Combustion Institute, 2009, 32, 2957-2964.	2.4	45

#	Article	lF	Citations
73	Numerical simulation of oxy-fuel jet flames using unstructured LES–CMC. Proceedings of the Combustion Institute, 2015, 35, 1207-1214.	2.4	44
74	Monte-Carlo simulation of unipolar diffusion charging for spherical and non-spherical particles. Journal of Aerosol Science, 2004, 35, 707-730.	1.8	42
75	Micromixing effects in a reacting plume by the Stochastic Fields method. Atmospheric Environment, 2006, 40, 1078-1091.	1.9	42
76	Numerical simulation of thermal and reaction fronts for oil shale upgrading. Chemical Engineering Science, 2013, 94, 200-213.	1.9	42
77	Simulations of Autoignition and Laminar Premixed Flames in Methane/Air Mixtures Diluted with Hot Products. Combustion Science and Technology, 2014, 186, 453-465.	1.2	40
78	A Comparison of Alternative Fuels for Shipping in Terms of Lifecycle Energy and Cost. Energies, 2021, 14, 8502.	1.6	40
79	Statistical Analysis of Turbulent Flame-Droplet Interaction: A Direct Numerical Simulation Study. Flow, Turbulence and Combustion, 2016, 96, 573-607.	1.4	38
80	Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme. Combustion and Flame, 2016, 167, 72-85.	2.8	36
81	A Model for the Effects of Mixing on the Autoignition of Turbulent Flows. Combustion Science and Technology, 1997, 125, 243-282.	1.2	35
82	Non-linear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations of Two Frequencies. Flow, Turbulence and Combustion, 2008, 80, 455.	1.4	35
83	Syngas production from liquid fuels in a non-catalytic porous burner. Fuel, 2011, 90, 64-76.	3.4	35
84	Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames. Combustion Theory and Modelling, 2016, 20, 548-565.	1.0	34
85	Aerosol nucleation and growth in a turbulent jet using the Stochastic Fields method. Chemical Engineering Science, 2008, 63, 4078-4089.	1.9	33
86	Structure of igniting ethanol and n-heptane spray flames with and without swirl. Experimental Thermal and Fluid Science, 2012, 43, 47-54.	1.5	33
87	Spontaneous ignition of isolated n-heptane droplets at low, intermediate, and high ambient temperatures from a mixture-fraction perspective. Combustion and Flame, 2015, 162, 2544-2560.	2.8	31
88	Mechanisms of flame propagation in jet fuel sprays as revealed by OH/fuel planar laser-induced fluorescence and OH* chemiluminescence. Combustion and Flame, 2019, 206, 308-321.	2.8	31
89	Measurements of scalar dissipation in a turbulent plume with planar laser-induced fluorescence of acetone. Chemical Engineering Science, 2006, 61, 2835-2842.	1.9	28
90	Simulations of laminar non-premixed flames of methane with hot combustion products as oxidiser. Combustion and Flame, 2016, 163, 1-11.	2.8	28

#	Article	IF	CITATIONS
91	Azimuthally forced flames in an annular combustor. Proceedings of the Combustion Institute, 2017, 36, 3783-3790.	2.4	28
92	Measurements in swirling spray flames at blow-off. International Journal of Spray and Combustion Dynamics, 2018, 10, 185-210.	0.4	28
93	Multi-dimensional Conditional Moment Closure Modelling Applied to a Heavy-duty Common-rail Diesel Engine. SAE International Journal of Engines, 0, 2, 714-726.	0.4	27
94	Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements. Experimental Thermal and Fluid Science, 2010, 34, 338-345.	1.5	27
95	Simulation of Hydrogen Auto-Ignition in a Turbulent Co-flow of Heated Air with LES and CMC Approach. Flow, Turbulence and Combustion, 2011, 86, 689-710.	1.4	27
96	Simulations of Turbulent Non-Premixed Counterflow Flames with First-Order Conditional Moment Closure. Flow, Turbulence and Combustion, 2006, 76, 133-162.	1.4	26
97	Large Eddy Simulation of a spray jet flame using Doubly Conditional Moment Closure. Combustion and Flame, 2019, 199, 309-323.	2.8	26
98	The effects of the Lewis number of the fuel on the displacement speed of edge flames in igniting turbulent mixing layers. Proceedings of the Combustion Institute, 2009, 32, 1399-1407.	2.4	25
99	LES/CMC Simulations of Swirl-Stabilised Ethanol Spray Flames Approaching Blow-Off. Flow, Turbulence and Combustion, 2016, 97, 1165-1184.	1.4	25
100	Spark ignition of a turbulent shear-less fuel–air mixing layer. Fuel, 2016, 164, 297-304.	3.4	25
101	Analysis of direct numerical simulations of ignition fronts in turbulent non-premixed flames in the context of conditional moment closure. Proceedings of the Combustion Institute, 2007, 31, 1683-1690.	2.4	24
102	Correlation of Spark Ignition with the Local Instantaneous Mixture Fraction in a Turbulent Nonpremixed Methane Jet. Combustion Science and Technology, 2010, 182, 1360-1368.	1.2	24
103	Heat Release Imaging in Turbulent Premixed Ethylene-Air Flames Near Blow-off. Flow, Turbulence and Combustion, 2016, 96, 1039-1051.	1.4	24
104	Second-Order Conditional Moment Closure Simulations of Autoignition of an n-heptane Plume in a Turbulent Coflow of Heated Air. Flow, Turbulence and Combustion, 2009, 82, 455-475.	1.4	23
105	Numerical Investigation of the Stochastic Behavior of Light-Round in Annular Non-Premixed Combustors. Combustion Science and Technology, 2017, 189, 1467-1485.	1.2	23
106	Experimental and Numerical Investigation on Spark Ignition of Linearly Arranged Non-Premixed Swirling Burners. Combustion Science and Technology, 2017, 189, 1326-1353.	1.2	22
107	Numerical investigation of kerosene single droplet ignition at high-altitude relight conditions. Fuel, 2018, 225, 663-670.	3.4	22
108	Ignition of uniform droplet-laden weakly turbulent flows following a laser spark. Combustion and Flame, 2019, 199, 387-400.	2.8	22

#	Article	IF	Citations
109	Effect of spark location and laminar flame speed on the ignition transient of a premixed annular combustor. Combustion and Flame, 2020, 221, 296-310.	2.8	22
110	Rich n-heptane and diesel combustion in porous media. Experimental Thermal and Fluid Science, 2010, 34, 359-365.	1.5	21
111	Regimes of Nonpremixed Combustion of Hot Low-Calorific-Value Gases Derived from Biomass Gasification. Energy &	2.5	21
112	Measurements of the Statistical Distribution of the Scalar Dissipation Rate in Turbulent Axisymmetric Plumes. Flow, Turbulence and Combustion, 2008, 81, 221-234.	1.4	20
113	Temperature and reaction zone imaging in turbulent swirling dual-fuel flames. Proceedings of the Combustion Institute, 2019, 37, 2159-2166.	2.4	20
114	LES/CMC modelling of ignition and flame propagation in a non-premixed methane jet. Proceedings of the Combustion Institute, 2019, 37, 2125-2132.	2.4	20
115	Visualisation of turbulent swirling dual-fuel flames. Proceedings of the Combustion Institute, 2017, 36, 1721-1727.	2.4	19
116	Analysing the Performance of Ammonia Powertrains in the Marine Environment. Energies, 2021, 14, 7447.	1.6	19
117	Modeling of turbulent opposed-jet mixing flows with – model and second-order closure. International Journal of Heat and Mass Transfer, 2004, 47, 1023-1035.	2.5	18
118	Experiments and Large-Eddy Simulations of acoustically forced bluff-body flows. International Journal of Heat and Fluid Flow, 2010, 31, 754-766.	1.1	18
119	Conditional Moment Closure/Large Eddy Simulation of the Delft-III Natural Gas Non-premixed Jet Flame. Flow, Turbulence and Combustion, 2012, 88, 207-231.	1.4	18
120	Numerical simulation of thermal and reaction waves for in situ combustion in hydrocarbon reservoirs. Fuel, 2013, 108, 780-792.	3.4	18
121	LES-CMC Simulations of Different Auto-ignition Regimes of Hydrogen in a Hot Turbulent Air Co-flow. Flow, Turbulence and Combustion, 2013, 90, 583-604.	1.4	18
122	Pre-Chamber Ignition Mechanism: Simulations of Transient Autoignition in a Mixing Layer Between Reactants and Partially-Burnt Products. Flow, Turbulence and Combustion, 2018, 101, 1093-1102.	1.4	18
123	Modelling local extinction in Sydney swirling non-premixed flames with LES/CMC. Proceedings of the Combustion Institute, 2017, 36, 1669-1676.	2.4	17
124	Stabilisation of swirling dual-fuel flames. Experimental Thermal and Fluid Science, 2018, 95, 65-72.	1.5	17
125	Flame Propagation Following the Autoignition of Axisymmetric Hydrogen, Acetylene, and Normal-Heptane Plumes in Turbulent Coflows of Hot Air. Journal of Engineering for Gas Turbines and Power, 2008, 130, .	0.5	16
126	Transported scalar PDF calculations of autoignition of a hydrogen jet in a heated turbulent co-flow. Combustion Theory and Modelling, 2008, 12, 1153-1178.	1.0	16

#	Article	IF	CITATIONS
127	Simulations of droplet combustion under gas turbine conditions. Combustion and Flame, 2017, 184, 101-116.	2.8	16
128	Modelling of Boil-Off and Sloshing Relevant to Future Liquid Hydrogen Carriers. Energies, 2022, 15, 2046.	1.6	16
129	Effects of Fuel Lewis Number on Localised Forced Ignition of Turbulent Mixing Layers. Flow, Turbulence and Combustion, 2010, 84, 125-166.	1.4	15
130	The Conditional Moment Closure Model. Fluid Mechanics and Its Applications, 2011, , 91-117.	0.1	15
131	Sensitivity analysis of LES–CMC predictions of piloted jet flames. International Journal of Heat and Fluid Flow, 2013, 39, 53-63.	1.1	15
132	Experimental assessment of the lean blow-off in a fully premixed annular combustor. Experimental Thermal and Fluid Science, 2020, 112, 109994.	1.5	15
133	A LES-CMC formulation for premixed flames including differential diffusion. Combustion Theory and Modelling, 2018, 22, 411-431.	1.0	14
134	Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	0.5	14
135	Blow-off mechanisms of turbulent premixed bluff-body stabilised flames operated with vapourised kerosene fuels. Proceedings of the Combustion Institute, 2021, 38, 2957-2965.	2.4	14
136	Soot-Free Low-NOx Aeronautical Combustor Concept: The Lean Azimuthal Flame for Kerosene Sprays. Energy & Energy	2.5	14
137	Experimental investigation of unconfined turbulent premixed bluff-body stabilized flames operated with vapourised liquid fuels. Combustion and Flame, 2021, 227, 428-442.	2.8	14
138	Numerical Investigation of Edge Flame Propagation Behavior in an Igniting Turbulent Planar Jet. Combustion Science and Technology, 2010, 182, 1747-1781.	1.2	13
139	A forced ignition probability analysis method using LES and Lagrangian particle monitoring. Proceedings of the Combustion Institute, 2011, 33, 2919-2925.	2.4	13
140	Experimental investigation of turbulent flames in uniform dispersions of ethanol droplets. Combustion and Flame, 2017, 179, 95-116.	2.8	13
141	Soot particle size distribution measurements in a turbulent ethylene swirl flame. Proceedings of the Combustion Institute, 2021, 38, 2691-2699.	2.4	13
142	An Introduction to Turbulent Reacting Flows. , 2007, , .		13
143	Mixing enhancement in axisymmetric turbulent isothermal and buoyant jets. Experiments in Fluids, 1996, 20, 279-290.	1.1	12
144	Investigation of the "TECFLAM―Non-premixed Flame Using Large Eddy Simulation and Proper Orthogonal Decomposition. Flow, Turbulence and Combustion, 2013, 90, 219-241.	1.4	12

#	Article	IF	CITATIONS
145	Spark ignition of single bluff-body premixed flames and annular combustors., 2013,,.		12
146	Autoignition of n-decane Droplets in the Low-, Intermediate-, and High-temperature Regimes from a Mixture Fraction Viewpoint. Flow, Turbulence and Combustion, 2016, 96, 1107-1121.	1.4	12
147	Direct Numerical Simulations of Dual-Fuel Non-Premixed Autoignition. Combustion Science and Technology, 2016, 188, 542-555.	1.2	12
148	The effect of fuel composition on swirling kerosene flames. , 2017, , .		12
149	Comprehensive soot particle size distribution modelling of a model Rich-Quench-Lean burner. Fuel, 2020, 270, 117483.	3.4	12
150	Estimates of the stochasticity of droplet dispersion by a cough. Physics of Fluids, 2021, 33, 115130.	1.6	12
151	The conceptual development of a simple scale-adaptive reactive pollutant dispersion model. Atmospheric Environment, 2005, 39, 2787-2794.	1.9	11
152	Simulation of the evolution of aircraft exhaust plumes including detailed chemistry and segregation. Journal of Geophysical Research, 2008, 113, .	3.3	11
153	Numerical simulation of shale gas flow in three-dimensional fractured porous media. Journal of Unconventional Oil and Gas Resources, 2016, 16, 90-112.	3.5	11
154	Dynamics of acoustically forced non-premixed flames close to blow-off. Experimental Thermal and Fluid Science, 2018, 95, 81-87.	1.5	11
155	Reduction of the RACM scheme using Computational Singular Perturbation Analysis. Journal of Geophysical Research, 2006, 111 , .	3.3	10
156	Modelling of Spray Flames with Doubly Conditional Moment Closure. Flow, Turbulence and Combustion, 2017, 99, 933-954.	1.4	10
157	Response of flames with different degrees of premixedness to acoustic oscillations. Combustion Science and Technology, 2018, 190, 1426-1441.	1.2	10
158	Low-Order Modeling of Combustion Noise in an Aero-Engine: The Effect of Entropy Dispersion. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	0.5	10
159	Assessment of experimental observables for local extinction through unsteady laminar flame calculations. Combustion and Flame, 2019, 207, 196-204.	2.8	10
160	Soot Emission Simulations of a Single Sector Model Combustor Using Incompletely Stirred Reactor Network Modeling. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	0.5	10
161	Experimental and numerical investigation of an ultra-low NO x methane reactor. Energy Procedia, 2017, 120, 214-221.	1.8	9
162	LES/CMC Modelling of a Gas Turbine Model Combustor with Quick Fuel Mixing. Flow, Turbulence and Combustion, 2019, 102, 909-930.	1.4	9

#	Article	IF	CITATIONS
163	Turbulent Combustion: Concepts, Governing Equations and Modeling Strategies. Fluid Mechanics and Its Applications, 2011, , 19-39.	0.1	8
164	Autoignition of monodisperse biodiesel and diesel sprays in turbulent flows. Experimental Thermal and Fluid Science, 2012, 43, 40-46.	1.5	8
165	Numerical Investigation of Ignition Performance of a Lean Burn Combustor at Sub-Atmospheric Conditions., 2014,,.		8
166	Simulations of laminar non-premixed flames of kerosene with hot combustion products as oxidiser. Combustion Theory and Modelling, 2016, 20, 958-973.	1.0	8
167	Low-order modeling of high-altitude relight of jet engine combustors. International Journal of Spray and Combustion Dynamics, 2021, 13, 20-34.	0.4	8
168	The development and application of a fast-response DC-coupled flame ionization current sensor. Experiments in Fluids, 1993, 14, 316-320.	1.1	7
169	Experimental Investigation of Soot Production and Oxidation in a Lab-Scale Rich–Quench–Lean (RQL) Burner. Flow, Turbulence and Combustion, 2021, 106, 1019-1041.	1.4	7
170	Development of a moving point source model for shipping emission dispersion modeling in EPISODEâ€"CityChem v1.3. Geoscientific Model Development, 2021, 14, 4509-4534.	1.3	7
171	The Origin of Turbulence Acquired by Heavy Particles in a round, turbulent jet. Particle and Particle Systems Characterization, 1990, 7, 203-208.	1.2	6
172	Numerical investigation of methane combustion under mixed air-steam turbine conditions––FLAMESEEK. Applied Thermal Engineering, 2004, 24, 1607-1618.	3.0	6
173	Numerical simulations of homogeneous charge compression ignition engines with high levels of residual gas. International Journal of Engine Research, 2007, 8, 63-78.	1.4	6
174	Numerical Simulation of Autoignition of a Diluted Hydrogen Plume in Co-Flowing Turbulent Hot Air. , 2010, , .		6
175	Experimental Investigation of the Response of Premixed and Non-premixed Turbulent Flames to Acoustic Forcing. , 2016 , , .		6
176	Lean Blow-Off Scaling of Turbulent Premixed Bluff-Body Flames of Vaporized Liquid Fuels. Journal of Propulsion and Power, 2021, 37, 479-486.	1.3	6
177	Proper Orthogonal Decomposition Analysis of a Turbulent Swirling Self-Excited Premixed Flame. , 2015, , .		5
178	On the bi-stable nature of turbulent premixed bluff-body stabilized flames at elevated pressure and near lean blow-off. Proceedings of the Combustion Institute, 2021, 38, 2853-2860.	2,4	5
179	A-Priori Validation of Scalar Dissipation Rate Models for Turbulent Non-Premixed Flames. Flow, Turbulence and Combustion, 2021, 107, 201-218.	1.4	5
180	Spark Ignition in a Turbulent Shearless Fuel-Air Mixing Layer: Average Flame Growth Rates., 2009,,.		4

#	Article	IF	CITATIONS
181	Visualisation of blow-off events of two interacting turbulent premixed flames. , 2013, , .		4
182	Ignition Probability and Lean Ignition Behavior of a Swirled Premixed Bluff Body Stabilized Annular Combustor. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	0.5	4
183	Reduced chemical mechanisms for atmospheric pollution using Computational Singular Perturbation analysis. Atmospheric Environment, 2004, 38, 3661-3661.	1.9	3
184	Understanding methane flame kinetics from reduced mechanisms. International Journal of Alternative Propulsion, 2007, 1, 216.	0.9	3
185	Spark ignition of turbulent non-premixed flames: experiments and simulations. AIP Conference Proceedings, 2009, , .	0.3	3
186	Simulations of Spark Ignition of a Swirling n-Heptane Spray Flame with Conditional Moment Closure. , 2010, , .		3
187	LES/CMC Predictions of Spark Ignition Probability in a Liquid Fuelled Swirl Combustor. , 2013, , .		3
188	Laser-induced breakdown spectroscopy measurements in turbulent methane flames. , 2014, , .		3
189	Lean Blowoff Scaling of Swirling, Bluff-Body Stabilized Spray Flames. , 2018, , .		3
190	Numerical Investigation of Flame Structure and Soot Formation in a Lab-Scale Rich-Quench-Lean Burner. , $2018, , .$		3
191	Polydispersity Effects in Low-order Ignition Modeling of Jet Fuel Sprays. Combustion Science and Technology, 2022, 194, 258-271.	1.2	3
192	Numerical investigation of lean blow-out of kerosene spray flames with detailed chemical models. , 2019, , .		3
193	Incompletely Stirred Reactor Network Modeling of a Model Gas Turbine Combustor. , 2020, , .		3
194	Effects of droplet size on the ignition of conventional and alternative jet fuels in turbulent air. , 2018, , .		3
195	Low-order modelling of the light-round ignition transient in a premixed annular combustor. Combustion Theory and Modelling, 0 , 1 - 23 .	1.0	3
196	Planar Laser Diagnostics at High Repetition Rates: Acquisition and Analysis of Transient Combustion Processes., 2008,,.		2
197	A lab-scale Rich-Quench-Lean (RQL) combustor for stability and soot investigations. , 2018, , .		2
198	Investigation of the effect of dilution air on soot production and oxidation in a lab scale Rich-Quench-Lean (RQL) burner. , 2019, , .		2

#	Article	IF	CITATIONS
199	MILD Combustion Limit Phenomena. Frontiers in Mechanical Engineering, 2020, 5, .	0.8	2
200	Visualization of Counterflow Flames. , 1992, , 580-584.		2
201	Lean Blowout Studies. , 2021, , 143-196.		2
202	Autoignition of isolated <i>n</i> -heptane droplets in air and hot combustion products at microturbine conditions. Combustion Theory and Modelling, 2022, 26, 541-559.	1.0	2
203	Autoignition of Liquid Fuel Droplets in a Turbulent Cross-Flow of Air. , 2011, , .		1
204	Conditional Moment Closure LES Modelling of an Aero-Engine Combustor at Relight Conditions. , $2011, , .$		1
205	A Simple Model of Off-Stoichiometric Premixed Fuel Rich Spray Flames with Droplet Evaporation and Pyrolysis. International Journal of Spray and Combustion Dynamics, 2012, 4, 97-122.	0.4	1
206	Direct Numerical Simulations of Heptane Spray Autoignition in Methane-air Mixtures Relevant to Dual-fuel Engines. , $2014, \ldots$		1
207	Conditional moment closure for two-phase flows $\hat{a} \in A$ review of recent developments and application to various spray combustion configurations. , 2015, , .		1
208	Forced Response of Flames in a Bluff-Body Stabilized Annular Combustor. , 2017, , .		1
209	Transient Behavior of Kerosene Flames in a Bluff-Body Stabilized Swirl Combustor. , 2017, , .		1
210	Forced ignition of dispersions of liquid fuel in turbulent air flow. , 2017, , .		1
211	Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the LES/CMC Approach. , 2017, , .		1
212	Blow-off mechanism in a turbulent premixed bluff-body stabilized flame with pre-vaporized fuels. , 2019, , .		1
213	A Systems-Level Study of Various Passenger Aircraft Electrification Scenarios. , 2019, , .		1
214	Validation of a low-order model for ignition of sprays. , 2019, , .		1
215	The structure of spherical flames in turbulent two-phase flows as revealed by OH and fuel PLIF. , 2019, , \cdot		1
216	Simulating the blowoff transient of a swirling, bluff body-stabilized kerosene spray flame using detailed chemistry. , 2021 , , .		1

#	Article	IF	CITATIONS
217	LES/CMC of blow-off in a liquid fueled swirl burner. , 2012, , .		1
218	Spark Ignition of Turbulent Premixed and Non-premixed Opposed Jet Flames. , 2006, , .		0
219	Flame Propagation Following the Autoignition of Axisymmetric Hydrogen, Acetylene and Normal-Heptane Plumes in Turbulent Co-Flows of Hot Air. , 2006, , 843.		O
220	Simulations of the Chemical Transformations In a Jet Engine Exhaust Plume., 2010,,.		0
221	Spark ignition and expansion of a turbulent non-premixed bluff-body methane flame using Large Eddy Simulations. , $2011, \ldots$		O
222	A comparison of the blow-off behaviour of swirl-stabilized premixed and spray flames. , 2012, , .		0
223	Simulations of kerosene droplet combustion in vitiated air. , 2016, , .		O
224	Low-Order Modelling of Combustion Noise in an Aero-Engine: The Effect of Entropy Dispersion. , 2017, , .		0
225	Advances in Turbulence, Heat and Mass Transfer Preface. Flow, Turbulence and Combustion, 2019, 103, 845-846.	1.4	O
226	An assessment of the uncertainty involved in predictions of energy consumption and carbon emissions from future fully-electrified aircraft., 2019,,.		0
227	Conditional Moment Closure Approaches for Simulating Soot and NOx in a Heavy-Duty Diesel Engine. , 0, , .		O
228	LES/CMC of Forced Ignition of a Bluff-Body Stabilised Non-premixed Methane Flame. ERCOFTAC Series, 2010, , 361-366.	0.1	O
229	Direct numerical simulations of n-heptane spray autoignition in the low-temperature regime. , 2013, , .		0
230	Lean blow-off investigation in a linear multi-burner combustor operated in premixed and non-premixed modes. Applications in Energy and Combustion Science, 2021, , 100041.	0.9	0