
Patrick Bertolino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1554349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ROCK2 inhibition attenuates profibrogenic immune cell function to reverse thioacetamide-induced liver fibrosis. JHEP Reports, 2022, 4, 100386.	2.6	22
2	The liver contains distinct interconnected networks of <scp>CX3CR1</scp> ⁺ macrophages, <scp>XCR1</scp> ⁺ type 1 and <scp>CD301a</scp> ⁺ type 2 conventional dendritic cells embedded within portal tracts. Immunology and Cell Biology, 2022, 100, 394-408.	1.0	4
3	TCR Affinity Controls the Dynamics but Not the Functional Specification of the Antimycobacterial CD4+ T Cell Response. Journal of Immunology, 2021, 206, 2875-2887.	0.4	5
4	Zone defence – the gut microbiota position macrophages for optimal liver protection. Immunology and Cell Biology, 2021, 99, 565-569.	1.0	3
5	The self-peptide repertoire plays a critical role in transplant tolerance induction. Journal of Clinical Investigation, 2021, 131, .	3.9	10
6	Induction Phase of Spontaneous Liver Transplant Tolerance. Frontiers in Immunology, 2020, 11, 1908.	2.2	7
7	A Natural Peptide Antigen within the Plasmodium Ribosomal Protein RPL6 Confers Liver TRM Cell-Mediated Immunity against Malaria in Mice. Cell Host and Microbe, 2020, 27, 950-962.e7.	5.1	45
8	Glycolipid-peptide vaccination induces liver-resident memory CD8 ⁺ T cells that protect against rodent malaria. Science Immunology, 2020, 5, .	5.6	43
9	DISCOVERY OF PMHC EPITOPES FOR DIRECTLY ALLOREACTIVE T CELLS. Transplantation, 2020, 104, S17-S18.	0.5	0
10	PD-L1 / PD-1 INTERACTIONS ARE CRITICAL FOR TOLERANCE INDUCTION IN PRIMED SKIN GRAFT RECIPIENTS FOLLOWING LIVER-DIRECTED MHC CLASS I GENE TRANSFER. Transplantation, 2020, 104, S97-S98.	0.5	0
11	Single-Dose Vaccination with a Hepatotropic Adeno-associated Virus Efficiently Localizes T Cell Immunity in the Liver with the Potential To Confer Rapid Protection against Hepatitis C Virus. Journal of Virology, 2019, 93, .	1.5	9
12	Multiple receptors converge on H2â€Q10 to regulate NK and γÎTâ€cell development. Immunology and Cell Biology, 2019, 97, 326-339.	1.0	13
13	A proinflammatory CD4+ T cell phenotype in gestational diabetes mellitus. Diabetologia, 2018, 61, 1633-1643.	2.9	38
14	Anti-PD-1-induced high-grade hepatitis associated with corticosteroid-resistant T cells: a case report. Cancer Immunology, Immunotherapy, 2018, 67, 563-573.	2.0	50
15	Deletion of sphingosine kinase 1 inhibits liver tumorigenesis in diethylnitrosamine-treated mice. Oncotarget, 2018, 9, 15635-15649.	0.8	19
16	CD8+ T Cell Activation Leads to Constitutive Formation of Liver Tissue-Resident Memory T Cells that Seed a Large and Flexible Niche in the Liver. Cell Reports, 2018, 25, 68-79.e4.	2.9	79
17	An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis. Cell, 2018, 175, 530-543.e24.	13.5	89
18	Pulmonary immunization with a recombinant influenza A virus vaccine induces lung-resident CD4+ memory T cells that are associated with protection against tuberculosis. Mucosal Immunology, 2018, 11, 1743-1752.	2.7	48

#	Article	IF	CITATIONS
19	Direct recognition of hepatocyte-expressed MHC class I alloantigens is required for tolerance induction. JCI Insight, 2018, 3, .	2.3	11
20	The RhoGAP protein ARHGAP18/SENEX localizes to microtubules and regulates their stability in endothelial cells. Molecular Biology of the Cell, 2017, 28, 1066-1078.	0.9	19
21	The proâ€fibrotic role of dipeptidyl peptidase 4 in carbon tetrachlorideâ€induced experimental liver injury. Immunology and Cell Biology, 2017, 95, 443-453.	1.0	32
22	Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Science Immunology, 2017, 2, .	5.6	138
23	A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment. Immunity, 2017, 47, 374-388.e6.	6.6	171
24	Liver-Resident Memory CD8 + T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection. Immunity, 2016, 45, 889-902.	6.6	341
25	The CD8 Tâ€cell response during tolerance induction in liver transplantation. Clinical and Translational Immunology, 2016, 5, e102.	1.7	15
26	Effector T cell function rather than survival determines extent and duration of hepatitis in mice. Journal of Hepatology, 2016, 64, 1327-1338.	1.8	5
27	Could The Morning After liver transplant be immunologically interesting?. Liver Transplantation, 2015, 21, 1120-1122.	1.3	0
28	The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1499-1507.	1.7	30
29	miRâ€181a mediates <scp>TGF</scp> â€Î²â€induced hepatocyte <scp>EMT</scp> and is dysregulated in cirrhosis and hepatocellular cancer. Liver International, 2015, 35, 240-253.	1.9	71
30	Immune outcomes in the liver: Is CD8 T cell fate determined by the environment?. Journal of Hepatology, 2015, 63, 1005-1014.	1.8	45
31	IRGM3 Contributes to Immunopathology and Is Required for Differentiation of Antigen-Specific Effector CD8 ⁺ T Cells in Experimental Cerebral Malaria. Infection and Immunity, 2015, 83, 1406-1417.	1.0	8
32	Malaria and the liver: immunological hide-and-seek or subversion of immunity from within?. Frontiers in Microbiology, 2015, 6, 41.	1.5	40
33	Caveolae control the antiâ€inflammatory phenotype of senescent endothelial cells. Aging Cell, 2015, 14, 102-111.	3.0	36
34	Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. Journal of Clinical Investigation, 2015, 125, 3627-3641.	3.9	70
35	Suicidal emperipolesis: a process leading to cell-in-cell structures, T cell clearance and immune homeostasis Current Molecular Medicine, 2015, 15, 819-827.	0.6	31
36	Disruption of CD8-Coreceptor Binding Abrogates Tolerance Induction Via Liver-Directed Expression of Donor MHC Class I - A Role for PD-L1?. Transplantation, 2014, 98, 392.	0.5	0

#	Article	IF	CITATIONS
37	Antigen expression level threshold tunes the fate of CD8 T cells during primary hepatic immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2540-9.	3.3	81
38	Intrahepatic Activation of Naive CD4+ T Cells by Liver-Resident Phagocytic Cells. Journal of Immunology, 2014, 193, 2087-2095.	0.4	28
39	Primary T-Cell Activation in Liver. , 2014, , 899-905.		Ο
40	Ultrastructure of the Liver Sinusoid. , 2014, , 1235-1240.		0
41	Immune Responses to the Hepatitis C Virus. , 2014, , 476-486.		0
42	Differential migration of passenger leukocytes and rapid deletion of naive alloreactive CD8 T cells after mouse liver transplantation. Liver Transplantation, 2013, 19, 1224-1235.	1.3	25
43	Operational tolerance in liver transplantation: Shall we predict or promote?. Liver Transplantation, 2013, 19, 933-936.	1.3	7
44	Gene Therapy for Tolerance. Transplantation, 2013, 95, 70-77.	0.5	19
45	Regulation of dipeptidyl peptidase 8 and 9 expression in activated lymphocytes and injured liver. World Journal of Gastroenterology, 2013, 19, 2883-2893.	1.4	33
46	Two lymph nodes draining the mouse liver are the preferential site of DC migration and T cell activation. Journal of Hepatology, 2012, 57, 352-358.	1.8	46
47	NaÃ⁻ve CD8 T cell activation by liver bone marrow-derived cells leads to a "neglected―IL-2low Bimhigh phenotype, poor CTL function and cell death. Journal of Hepatology, 2012, 57, 830-836.	1.8	27
48	Tolerance in liver transplantation. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2012, 26, 73-84.	1.0	30
49	Spontaneous acceptance of mouse kidney allografts is associated with increased Foxp3 expression and differences in the B and T cell compartments. Transplant Immunology, 2011, 24, 149-156.	0.6	29
50	Role of the Hepatic Parenchyma in Liver Transplant Tolerance: A Paradigm Revisited. Digestive Diseases, 2011, 29, 391-401.	0.8	9
51	Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16735-16740.	3.3	137
52	The Impact of Poloxamer 407 on the Ultrastructure of the Liver and Evidence for Clearance by Extensive Endothelial and Kupffer Cell Endocytosis. Toxicologic Pathology, 2011, 39, 390-397.	0.9	17
53	Mechanisms of T Cell Death in the Liver: To Bim or Not to Bim?. Digestive Diseases, 2010, 28, 14-24.	0.8	17
54	Invading macrophages play a major role in the liver progenitor cell response to chronic liver injury. Journal of Hepatology, 2010, 53, 500-507.	1.8	61

#	Article	IF	CITATIONS
55	CD8+ T cell tolerance following antigen recognition on hepatocytes. Journal of Autoimmunity, 2010, 34, 15-22.	3.0	35
56	Molecular and Cellular Aspects of Hepatitis C Virus Reinfection After Liver Transplantation: How the Early Phase Impacts on Outcomes. Transplantation, 2009, 87, 1105-1111.	0.5	33
57	Toward MSC in Solid Organ Transplantation: 2008 Position Paper of the MISOT Study Group. Transplantation, 2009, 88, 614-619.	0.5	64
58	Interleukin-22, interleukin-17, and other cytokines: A wall is coming down. Hepatology, 2008, 47, 345-348.	3.6	5
59	Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transplantation, 2008, 14, 688-694.	1.3	76
60	Impaired function of dendritic cells translocating the liver sinusoids: A veto effect contributing to intrahepatic tolerance?. European Journal of Immunology, 2008, 38, 938-941.	1.6	9
61	Intrahepatic Murine CD8 T-Cell Activation Associates With a Distinct Phenotype Leading to Bim-Dependent Death. Gastroenterology, 2008, 135, 989-997.	0.6	114
62	Liver Tolerance and the Manipulation of Immune Outcomes. Inflammation and Allergy: Drug Targets, 2008, 7, 6-18.	1.8	14
63	Immunological Parameters Influencing Adaptive Immune Responses to the Hepatitis C Virus. , 2008, , 39-70.		0
64	The Liver: A Special Case in Transplantation Tolerance. Seminars in Liver Disease, 2007, 27, 194-213.	1.8	143
65	Marked changes of the hepatic sinusoid in a transgenic mouse model of acute immune-mediated hepatitis. Journal of Hepatology, 2007, 46, 239-246.	1.8	48
66	TLR4 activation mediates kidney ischemia/reperfusion injury. Journal of Clinical Investigation, 2007, 117, 2847-2859.	3.9	720
67	Toll-like receptor-3 and the regulation of intrahepatic immunity: Implications for interferon-alpha therapy. Hepatology, 2007, 45, 250-251.	3.6	6
68	T cells in the liver: There is life beyond the graveyard. Hepatology, 2007, 45, 1580-1582.	3.6	9
69	Immune-mediated hepatitis drives low-level fusion between hepatocytes and adult bone marrow cells. Journal of Hepatology, 2006, 44, 334-341.	1.8	14
70	T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology, 2006, 44, 1182-1190.	3.6	252
71	Hepatic pseudocapillarization in aged mice. Experimental Gerontology, 2005, 40, 807-812.	1.2	60
72	Early intrahepatic antigen-specific retention of naÃ ⁻ ve CD8+T cells is predominantly ICAM-1/LFA-1 dependent in mice. Hepatology, 2005, 42, 1063-1071.	3.6	51

#	Article	IF	CITATIONS
73	Parenchymal Expression of CD86/B7.2 Contributes to Hepatitis C Virus-Related Liver Injury. Journal of Virology, 2005, 79, 10730-10739.	1.5	17
74	Intrahepatic immunity: a tale of two sites?. Trends in Immunology, 2005, 26, 512-517.	2.9	104
75	The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. Journal of Clinical Investigation, 2004, 114, 701-712.	3.9	247
76	The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. Journal of Clinical Investigation, 2004, 114, 701-712.	3.9	132
77	Immune-Mediated Hepatitis Drives Bone marrow to Hepatocyte Plasticity Blood, 2004, 104, 3599-3599.	0.6	0
78	The liver sieve and gene therapy. Blood, 2003, 101, 3338-3338.	0.6	8
79	Growth Enhancement in Suppressor of Cytokine Signaling 2 (SOCS-2)-Deficient Mice Is Dependent on Signal Transducer and Activator of Transcription 5b (STAT5b). Molecular Endocrinology, 2002, 16, 1394-1406.	3.7	145
80	Cytokine-dependent bystander hepatitis due to intrahepatic murine CD8+ T-cell activation by bone marrow–derived cells. Gastroenterology, 2002, 123, 1252-1264.	0.6	82
81	Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. European Journal of Immunology, 2002, 32, 994-1002.	1.6	175
82	Role of primary intrahepatic T-cell activation in the †̃liver tolerance effect'. Immunology and Cell Biology, 2002, 80, 84-92.	1.0	130
83	Suppressor of Cytokine Signaling-1 Attenuates the Duration of Interferon Î ³ Signal Transduction in Vitro and in Vivo. Journal of Biological Chemistry, 2001, 276, 22086-22089.	1.6	95
84	Antigen-Specific Primary Activation of CD8+ T Cells Within the Liver. Journal of Immunology, 2001, 166, 5430-5438.	0.4	192
85	Death by neglect as a deletional mechanism of peripheral tolerance. International Immunology, 1999, 11, 1225-1238.	1.8	83
86	Carboxyfluorescein diacetate succinimidyl ester and the virgin lymphocyte: A marriage made in heaven. Immunology and Cell Biology, 1999, 77, 530-538.	1.0	52
87	Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. European Journal of Immunology, 1998, 28, 221-236.	1.6	213
88	The MHC class II-associated invariant chain: a molecule with multiple roles in MHC class II biosynthesis and antigen presentation to CD4+ T cells. Critical Reviews in Immunology, 1996, 16, 359-79.	1.0	37
89	Expression of two T cell receptor α chains on the surface of normal murine T cells. European Journal of Immunology, 1995, 25, 1617-1623.	1.6	121
90	Peripheral deletion of autoreactive CD8+ T cells in transgenic mice expressing H-2Kb in the liver. European Journal of Immunology, 1995, 25, 1932-1942.	1.6	138

#	Article	IF	CITATIONS
91	Cryotherapy of Liver Tumours–A Practical Guide. HPB Surgery, 1995, 8, 167-173.	2.2	54
92	Deletion of a C-terminal sequence of the class II-associated invariant chain abrogates invariant chains oligomer formation and class II antigen presentation. Journal of Immunology, 1995, 154, 5620-9.	0.4	21
93	Major histocompatibility complex class II-restricted presentation of secreted and endoplasmic reticulum resident antigens requires the invariant chains and is sensitive to lysosomotropic agents. European Journal of Immunology, 1993, 23, 3167-3172.	1.6	28
94	Invariant Chain Expression Similarly Controls Presentation of Endogenously Synthesized and Exogenous Antigens by MHC Class II Molecules. Cellular Immunology, 1993, 148, 60-70.	1.4	10
95	Inhibition by chloroquine of the class II major histocompatibility complex-restricted presentation of endogenous antigens varies according to the cellular origin of the antigen-presenting cells, the nature of the T-cell epitope, and the responding T cell. Immunology, 1993, 80, 566-73.	2.0	42
96	High efficiency of endogenous antigen presentation by MHC class II molecules. International Immunology, 1992, 4, 1113-1121.	1.8	32
97	Enhancement of in vivo and in vitro T cell response against measles virus haemagglutinin after its incorporation into liposomes: effect of the phospholipid composition. Vaccine, 1991, 9, 340-345.	1.7	21
98	Correlation between invariant chain expression level and capability to present antigen to MHC class II-restricted T cells. International Immunology, 1991, 3, 435-443.	1.8	33