Ockgoo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1554259/publications.pdf

Version: 2024-02-01

39	681	12	25
papers	citations	h-index	g-index
39	39	39	475 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	28-GHz CMOS Up-Conversion Mixer With Improved LO Second-Harmonic Leakage Signal Suppression for 5G Applications. IEEE Access, 2022, 10, 57003-57011.	4.2	4
2	Analysis and Design of a Fully-Integrated High-Power Differential CMOS T/R Switch and Power Amplifier Using Multi-Section Impedance Transformation Technique. Electronics (Switzerland), 2021, 10, 1028.	3.1	2
3	A Dual-Mode InGaP/GaAs HBT Power Amplifier Using a Low-Loss Parallel Power-Combining Transformer with IMD3 Cancellation Method. Electronics (Switzerland), 2021, 10, 1612.	3.1	1
4	Highly Efficient HBT Power Amplifier Using High-Q Single- and Two-Winding Transformer With IMD3 Cancellation. IEEE Access, 2021, 9, 85060-85070.	4.2	5
5	A Highly Efficient and Linear mm-Wave CMOS Power Amplifier Using a Compact Symmetrical Parallel–Parallel Power Combiner With IMD3 Cancellation for 5G Applications. IEEE Access, 2021, 9, 150304-150321.	4.2	4
6	A 28-GHz Highly Efficient CMOS Power Amplifier Using a Compact Symmetrical 8-Way Parallel-Parallel Power Combiner with IMD3 Cancellation Method., 2020,,.		9
7	A 24-GHz RF Transmitter in 65-nm CMOS for In-Cabin Radar Applications. Electronics (Switzerland), 2020, 9, 2005.	3.1	6
8	A Fully Integrated Compact Outphasing CMOS Power Amplifier Using a Parallel-Combining Transformer with a Tuning Inductor Method. Electronics (Switzerland), 2020, 9, 257.	3.1	4
9	An Integrated Lumped-Element Quadrature Coupler With Impedance Transforming. IEEE Microwave and Wireless Components Letters, 2020, 30, 152-155.	3.2	6
10	Parallel-Segmented CMOS Step-Up Autotransformer and Modeling. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2020, 31, 905-912.	0.3	0
11	A Fully Integrated â^32-dB EVM Broadband 802.11abgn/ac PA With an External PA Driver in WLP 40-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 1870-1882.	4.6	11
12	An onâ \in chip lowâ \in loss reconfigurable transformer for multimode power amplifiers. Microwave and Optical Technology Letters, 2019, 61, 943-947.	1.4	1
13	A 28-GHz CMOS Down-conversion Mixer with Low-magnetic-coupled Source Degeneration Inductors for 5G Applications. Journal of Semiconductor Technology and Science, 2019, 19, 373-377.	0.4	3
14	Fully Integrated CMOS PAs with Two-Winding and Single-Winding Combined Transformer for WLAN Applications. IEICE Transactions on Electronics, 2018, E101.C, 931-941.	0.6	0
15	A 5.5-GHz CMOS power amplifier using parallel-combined transistors with cascode adaptive biasing for WLAN applications. IEICE Electronics Express, 2018, 15, 20180336-20180336.	0.8	6
16	A TV Receiver Front-End With Linearized LNA and Current-Summing Harmonic Rejection Mixer. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64, 269-273.	3.0	7
17	A +12-dBm OIP3 60-GHz RF Downconversion Mixer With an Output-Matching, Noise- and Distortion-Canceling Active Balun for 5G Applications. IEEE Microwave and Wireless Components Letters, 2017, 27, 284-286.	3.2	30
18	An External Capacitor-Less Ultralow-Dropout Regulator Using a Loop-Gain Stabilizing Technique for High Power-Supply Rejection Over a Wide Range of Load Current. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 3006-3018.	3.1	21

#	Article	IF	Citations
19	Design and Analysis of CMOS T/R Switches With the Impedance Transformation Technique. IEEE Microwave and Wireless Components Letters, 2017, 27, 1137-1139.	3.2	10
20	2.3-GHz HBT Power Amplifier With Parallel-Segmented On-Chip Autotransformer. IEEE Microwave and Wireless Components Letters, 2017, 27, 1140-1142.	3.2	7
21	A Fully Integrated Dual-Mode CMOS Power Amplifier With an Autotransformer-Based Parallel Combining Transformer. IEEE Microwave and Wireless Components Letters, 2017, 27, 833-835.	3.2	13
22	WLAN transceiver for 802.11 a/b/g/n/ac with integrated power amplifier and harmonic LO frequency VCO. , 2017, , .		2
23	A 2.4-GHz CMOS power amplifier with parallel-combined transistors and selective adaptive biasing for wireless LAN applications. Microwave and Optical Technology Letters, 2016, 58, 1374-1377.	1.4	8
24	A highly efficient WLAN CMOS PA with two-winding and single-winding combined transformer. , 2016, , .		10
25	A Linear InGaP/GaAs HBT Power Amplifier Using Parallel-Combined Transistors With IMD3 Cancellation. IEEE Microwave and Wireless Components Letters, 2016, 26, 921-923.	3.2	22
26	A reconfigurable monolithic stepâ€up autotransformer. Microwave and Optical Technology Letters, 2015, 57, 1662-1666.	1.4	2
27	A High-Efficiency CMOS Power Amplifier Using 2:2 Output Transformer for 802.11n WLAN Applications. Journal of Semiconductor Technology and Science, 2015, 15, 280-285.	0.4	1
28	Optimization of CMOS power-cell layout for improving junction breakdown. IEICE Electronics Express, 2014, 11, 20140523-20140523.	0.8	0
29	CMOS Power Amplifier Using Mode Changeable Autotransformer. Journal of the Institute of Electronics and Information Engineers, 2014, 51, 59-65.	0.0	1
30	A Cascode Feedback Bias Technique for Linear CMOS Power Amplifiers in a Multistage Cascode Topology. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 890-901.	4.6	29
31	A switchless reconfigurable transformer CMOS power amplifier. IEICE Electronics Express, 2012, 9, 855-860.	0.8	3
32	A Parallel-Segmented Monolithic Step-Up Transformer. IEEE Microwave and Wireless Components Letters, 2011, 21, 468-470.	3.2	61
33	A Charging Acceleration Technique for Highly Efficient Cascode Class-E CMOS Power Amplifiers. IEEE Journal of Solid-State Circuits, 2010, 45, 2184-2197.	5.4	36
34	A Multi-Level and Multi-Band Class-D CMOS Power Amplifier for the LINC System in the Cognitive Radio Application. IEEE Microwave and Wireless Components Letters, 2010, 20, 352-354.	3.2	32
35	Analysis and Design of Fully Integrated High-Power Parallel-Circuit Class-E CMOS Power Amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57, 725-734.	5.4	35
36	A high power CMOS differential T/R switch using multi-section impedance transformation technique. , 2010, , .		10

Ockgoo Lee

#	Article	IF	CITATIONS
37	A 2.4 GHz Fully Integrated Linear CMOS Power Amplifier With Discrete Power Control. IEEE Microwave and Wireless Components Letters, 2009, 19, 479-481.	3.2	121
38	Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers. IEEE Journal of Solid-State Circuits, 2008, 43, 1064-1075.	5.4	131
39	A 60-GHz push-push InGaP HBT VCO with dynamic frequency divider. IEEE Microwave and Wireless Components Letters, 2005, 15, 679-681.	3.2	27