## Raluca-Ioana Stefan-van Staden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1554147/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. Journal of the Electrochemical Society, 2020, 167, 037528.                                                           | 1.3 | 103       |
| 2  | Chiral selectors in <scp>CE</scp> : Recent developments and applications. Electrophoresis, 2013, 34, 178-204.                                                                                             | 1.3 | 98        |
| 3  | Perspective—Challenges in Biomedical Analysis: From Classical Sensors to Stochastic Sensors. , 2022,<br>1, 011603.                                                                                        |     | 65        |
| 4  | Graphene-porphyrin composite synthesis through graphite exfoliation: The electrochemical sensing of catechol. Sensors and Actuators B: Chemical, 2018, 256, 665-673.                                      | 4.0 | 46        |
| 5  | Application of porphyrins in flow-injection analysis: A review. Talanta, 2010, 80, 1598-1605.                                                                                                             | 2.9 | 36        |
| 6  | The salivary levels of leptin and interleukin-6 as potential inflammatory markers in children obesity.<br>PLoS ONE, 2019, 14, e0210288.                                                                   | 1.1 | 31        |
| 7  | Graphene-based materials produced by graphite electrochemical exfoliation in acidic solutions:<br>Application to Sunset Yellow voltammetric detection. Microchemical Journal, 2019, 147, 112-120.         | 2.3 | 30        |
| 8  | Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed<br>Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode. Analytical Letters, 2019, 52, 2583-2606. | 1.0 | 29        |
| 9  | Exfoliation of graphite rods via pulses of current for graphene synthesis: Sensitive detection of<br>8-hydroxy-2′-deoxyguanosine. Talanta, 2019, 196, 182-190.                                            | 2.9 | 25        |
| 10 | Porphyrins-as Active Materials in the Design of Sensors. An Overview. ECS Journal of Solid State<br>Science and Technology, 2020, 9, 051005.                                                              | 0.9 | 25        |
| 11 | Enantioselective, potentiometric membrane electrodes based on cyclodextrins: Application for the determination of R-baclofen in its pharmaceutical formulation. Talanta, 2006, 69, 1049-1053.             | 2.9 | 24        |
| 12 | Enantioanalysis of glutamine—a key factor in establishing the metabolomics process in gastric cancer.<br>Analytical and Bioanalytical Chemistry, 2020, 412, 3199-3207.                                    | 1.9 | 24        |
| 13 | Amperometric biosensor based on diamond paste for the enantioanalysis of l-lysine. Biosensors and<br>Bioelectronics, 2012, 35, 439-442.                                                                   | 5.3 | 23        |
| 14 | Stochastic Microsensors Based on Nanostructured Materials Used in the Screening of Whole Blood for Hepatitis B. Journal of the Electrochemical Society, 2014, 161, B3001-B3005.                           | 1.3 | 23        |
| 15 | Mussel Shells, a Valuable Calcium Resource for the Pharmaceutical Industry. Marine Drugs, 2022, 20, 25.                                                                                                   | 2.2 | 22        |
| 16 | Enantioselective, potentiometric membrane electrodes based on cyclodextrins for the determination of l-histidine. Sensors and Actuators B: Chemical, 2007, 120, 399-402.                                  | 4.0 | 20        |
| 17 | Molecular Screening of Blood Samples for the Simultaneous Detection of CEA, HER-1, NSE, CYFRA 21-1<br>Using Stochastic Sensors. Journal of the Electrochemical Society, 2017, 164, B267-B273.             | 1.3 | 20        |
| 18 | Determination of baclofen enantiomers in pharmaceutical formulations using maltodextrin-based enantioselective, potentiometric membrane electrodes. Il Farmaco, 2004, 59, 993-997.                        | 0.9 | 17        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chiral Separation of the Clinically Important Compounds Fucose and Pipecolic Acid Using CE:<br>Determination of the Most Effective Chiral Selector. Chirality, 2013, 25, 556-560.                                  | 1.3 | 17        |
| 20 | Phthalocyanine-BODIPY dye: synthesis, characterization, and utilization for pattern recognition of CYFRA 21-1 in whole blood samples. Analytical and Bioanalytical Chemistry, 2017, 409, 6195-6203.                | 1.9 | 17        |
| 21 | Molecular Recognition of Colon Cancer Biomarkers: P53, KRAS and CEA in Whole Blood Samples.<br>Journal of the Electrochemical Society, 2017, 164, B443-B447.                                                       | 1.3 | 17        |
| 22 | Graphene/TiO <sub>2</sub> -Ag Based Composites Used as Sensitive Electrode Materials for Amaranth<br>Electrochemical Detection and Degradation. Journal of the Electrochemical Society, 2018, 165,<br>B3054-B3059. | 1.3 | 17        |
| 23 | Pattern recognition of neurotransmitters using multimode sensing. Journal of Neuroscience<br>Methods, 2014, 229, 1-7.                                                                                              | 1.3 | 16        |
| 24 | Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen. Nanoscale, 2015, 7, 15689-15694.                                                           | 2.8 | 16        |
| 25 | Nanostructured Materials Detect Dopamine in Biological Fluids. Journal of the Electrochemical Society, 2017, 164, B561-B566.                                                                                       | 1.3 | 16        |
| 26 | Molecular Enantiorecognition of D- and L-Glucose in Urine and Whole Blood Samples. Journal of the Electrochemical Society, 2019, 166, B3109-B3115.                                                                 | 1.3 | 16        |
| 27 | Enantioanalysis of tryptophan in whole blood samples using stochastic sensors—A screening test for gastric cancer. Chirality, 2020, 32, 215-222.                                                                   | 1.3 | 16        |
| 28 | Stone Paper as a New Substrate to Fabricate Flexible Screen-Printed Electrodes for the Electrochemical Detection of Dopamine. Sensors, 2020, 20, 3609.                                                             | 2.1 | 16        |
| 29 | Nitrogen and Sulfur Co-Doped Graphene as Efficient Electrode Material for L-Cysteine Detection.<br>Chemosensors, 2021, 9, 146.                                                                                     | 1.8 | 16        |
| 30 | Simultaneous Detection of Creatine and Creatinine using a Sequential Injection Analysis/Biosensor<br>System. Preparative Biochemistry and Biotechnology, 2006, 36, 287-296.                                        | 1.0 | 15        |
| 31 | Carbon and diamond paste microelectrodes based on Mn(III) porphyrins for the determination of dopamine. Analytica Chimica Acta, 2010, 668, 201-207.                                                                | 2.6 | 15        |
| 32 | Influence of Physical Immobilization of dsDNA on Carbon Based Matrices of Electrochemical Sensors.<br>Current Pharmaceutical Analysis, 2014, 10, 20-29.                                                            | 0.3 | 15        |
| 33 | Screening of children saliva samples for bisphenol A using stochastic, amperometric and multimode microsensors. Analytical Chemistry Research, 2014, 1, 1-7.                                                       | 2.0 | 15        |
| 34 | Multimode sensors as new tools for molecular recognition of testosterone, dihydrotestosterone and estradiol in children's saliva. Journal of Molecular Recognition, 2015, 28, 10-19.                               | 1.1 | 15        |
| 35 | Pattern recognition of 8-hydroxy-2′-deoxyguanosine in biological fluids. Analytical and Bioanalytical Chemistry, 2018, 410, 115-121.                                                                               | 1.9 | 15        |
| 36 | Nanostructured Materials Used for Pattern Recognition of Bisphenols in Waste Water Samples.<br>Journal of the Electrochemical Society, 2019, 166, B903-B907.                                                       | 1.3 | 15        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Myoglobin-silver reduced graphene oxide nanocomposite stochastic biosensor for the determination<br>of luteinizing hormone and follicle-stimulating hormone from saliva samples. Analytical and<br>Bioanalytical Chemistry, 2020, 412, 5191-5202. | 1.9 | 15        |
| 38 | Review—Trends in Recent Developments in Electrochemical Sensors for the Determination of<br>Polycyclic Aromatic Hydrocarbons from Water Resources and Catchment Areas. Journal of the<br>Electrochemical Society, 2021, 168, 047504.              | 1.3 | 15        |
| 39 | Pattern recognition of estradiol, testosterone and dihydrotestosterone in children's saliva samples<br>using stochastic microsensors. Scientific Reports, 2015, 4, 5579.                                                                          | 1.6 | 14        |
| 40 | Salivary biomarkers of inflammation in systemic lupus erythematosus. Annals of Anatomy, 2018, 219, 89-93.                                                                                                                                         | 1.0 | 14        |
| 41 | Molecular recognition of IL-8, IL-10, IL-12, and IL-15 in biological fluids using phthalocyanine-based stochastic sensors. Analytical and Bioanalytical Chemistry, 2018, 410, 7723-7737.                                                          | 1.9 | 14        |
| 42 | Needle stochastic sensors for on-site fast recognition and quantification of biomarkers for gastric cancer in biological samples. New Journal of Chemistry, 2020, 44, 20203-20211.                                                                | 1.4 | 14        |
| 43 | Diamond paste-based electrodes for the determination of sildenafil citrate (Viagra). Journal of Solid<br>State Electrochemistry, 2010, 14, 997-1000.                                                                                              | 1.2 | 13        |
| 44 | Enantioanalysis of Pipecolic Acid with Stochastic and Potentiometric Microsensors. Chirality, 2013, 25, 114-118.                                                                                                                                  | 1.3 | 13        |
| 45 | Graphene-based stochastic sensors for pattern recognition of gastric cancer biomarkers in biological fluids. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1365-1370.                                                                      | 0.4 | 13        |
| 46 | A Genetic Screening Test for Obesity Based on Stochastic Sensing. Journal of the Electrochemical Society, 2014, 161, B167-B170.                                                                                                                   | 1.3 | 12        |
| 47 | Pattern recognition of Cu(II), Pb(II), Hg(II), and Cd(II) in waste waters. Microsystem Technologies, 2017, 23, 1141-1145.                                                                                                                         | 1.2 | 12        |
| 48 | Molecular Recognition of Nitrites and Nitrates in Water Samples Using Graphene-Based Stochastic<br>Microsensors. Analytical Chemistry, 2018, 90, 9997-10000.                                                                                      | 3.2 | 12        |
| 49 | Fast Screening of Whole Blood and Tumor Tissue for Bladder Cancer Biomarkers Using Stochastic<br>Needle Sensors. Sensors, 2020, 20, 2420.                                                                                                         | 2.1 | 12        |
| 50 | Review—Recent Trends in Supramolecular Recognition of Dopamine, Tyrosine, and Tryptophan, Using Electrochemical Sensors. Journal of the Electrochemical Society, 2021, 168, 067517.                                                               | 1.3 | 12        |
| 51 | Enantioselective, Potentiometric Carbon Paste Electrodes Based on C60Derivatives as Chiral<br>Selectors for the Enantioanalysis of Sâ€Clenbuterol. Analytical Letters, 2006, 39, 1311-1319.                                                       | 1.0 | 11        |
| 52 | Enantioselective potentiometric membrane electrodes based on C60 fullerene and its derivatives for the assay of I-Histidine. Talanta, 2007, 71, 1434-1437.                                                                                        | 2.9 | 11        |
| 53 | Amperometric dot-sensors based on zinc porphyrins for sildenafil citrate determination.<br>Electrochimica Acta, 2011, 58, 290-295.                                                                                                                | 2.6 | 11        |
| 54 | Engineered nanoporous gold microspheres for stochastic sensing. RSC Advances, 2014, 4, 54140-54143.                                                                                                                                               | 1.7 | 11        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | New stochastic microsensors based on oleamides. Electrochemistry Communications, 2015, 51, 98-102.                                                                                        | 2.3 | 11        |
| 56 | 3D stochastic microsensors for molecular recognition and determination of heregulin- $\hat{l}_{\pm}$ in biological samples. Analytical and Bioanalytical Chemistry, 2021, 413, 3487-3492. | 1.9 | 11        |
| 57 | 2D disposable stochastic sensors for molecular recognition and quantification of maspin in biological samples. Mikrochimica Acta, 2022, 189, 101.                                         | 2.5 | 11        |
| 58 | Enantioselective assay of S(+)-ibuprofen using enantioselective, potentiometric membrane electrodes based on maltodextrins. Sensors and Actuators B: Chemical, 2006, 120, 295-297.        | 4.0 | 10        |
| 59 | Wireless Electrochemical Sensors: A Tool for Process Control Past, Present and the Future. Critical<br>Reviews in Analytical Chemistry, 2010, 40, 226-233.                                | 1.8 | 10        |
| 60 | Pattern recognition of neuron specific enolase and carcinoembryonic antigen in whole blood samples. Journal of Molecular Recognition, 2015, 28, 103-107.                                  | 1.1 | 10        |
| 61 | New nanocomposite-graphene pastes based stochastic microsensors. RSC Advances, 2015, 5, 66185-66191.                                                                                      | 1.7 | 10        |
| 62 | Advanced Methods for the Analysis of Testosterone. Current Medicinal Chemistry, 2018, 25, 4037-4049.                                                                                      | 1.2 | 10        |
| 63 | Molecular Recognition of C-Reactive Protein, Adiponectin and Zn <sup>2+</sup> in Serum Samples.<br>Journal of the Electrochemical Society, 2019, 166, B3051-B3055.                        | 1.3 | 10        |
| 64 | Utilization of Maltodextrinâ€Based Enantioselective, Potentiometric Membrane Electrodes for the<br>Enantioselective Assay of Sâ€Flurbiprofen. Analytical Letters, 2006, 39, 1065-1073.    | 1.0 | 9         |
| 65 | Enantioselective, Potentiometric Memberane Electrodes Based on Different Cyclodextrins as Chiral<br>Selectors for the Assay of S-Flurbiprofen. Electroanalysis, 2006, 18, 1718-1721.      | 1.5 | 9         |
| 66 | Disposable Stochastic Dot Sensors for the Assay of Ascorbic Acid in Pharmaceutical Samples,<br>Beverages, and Biological Fluids. Analytical Letters, 2011, 44, 2280-2286.                 | 1.0 | 9         |
| 67 | Stochastic Dot Microsensors for the Assay of Dopamine in Pharmaceutical Samples and Biological Fluids. Journal of the Electrochemical Society, 2012, 159, B839-B844.                      | 1.3 | 9         |
| 68 | Determination ofl- and d-fucose using amperometric electrodes based on diamond paste. Analyst, The, 2012, 137, 903-909.                                                                   | 1.7 | 9         |
| 69 | Evaluation of Amperometric Dot Microsensors for the Analysis of Serotonin in Urine Samples.<br>Journal of the Electrochemical Society, 2014, 161, B49-B54.                                | 1.3 | 9         |
| 70 | Graphene Based Dot Microsensors Used for the Screening of Urine for Adenine, Guanine and Epinephrine. Journal of the Electrochemical Society, 2014, 161, B3014-B3022.                     | 1.3 | 9         |
| 71 | Pattern recognition of HER-1 in biological fluids using stochastic sensing. Journal of Enzyme<br>Inhibition and Medicinal Chemistry, 2015, 30, 283-285.                                   | 2.5 | 9         |
| 72 | Review—Enzymatic and Non-Enzymatic (bio)sensors Based on Phthalocyanines. A Minireview. ECS<br>Journal of Solid State Science and Technology, 2020, 9, 051012.                            | 0.9 | 9         |

| #  | Article                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Cyclodextrins-based enantioselective, potentiometric membrane electrodes for l-vesamicol assay in serum samples. Sensors and Actuators B: Chemical, 2006, 117, 123-127.                                                                                                                                                 | 4.0 | 8         |
| 74 | Inulins as Electroactive Materials for Enantioanalysis of Chiral Drugs. Journal of the Electrochemical Society, 2013, 160, B192-B195.                                                                                                                                                                                   | 1.3 | 8         |
| 75 | Fast screening of biological fluids for cytokines and adipokines using stochastic sensing.<br>Microelectronic Engineering, 2015, 148, 64-69.                                                                                                                                                                            | 1.1 | 8         |
| 76 | Novel textile material based disposable sensors for biomedical analysis. RSC Advances, 2015, 5, 45545-45550.                                                                                                                                                                                                            | 1.7 | 8         |
| 77 | Multimode microsensors based on Ag–TiO <sub>2</sub> –graphene materials used for the molecular recognition of carcinoembryonic antigen in whole blood samples. RSC Advances, 2017, 7, 28419-28426.                                                                                                                      | 1.7 | 8         |
| 78 | Electrochemical Determination of the KRAS Genetic Marker for Colon Cancer with Modified Graphete and Graphene Paste Electrodes. Analytical Letters, 2018, 51, 2822-2834.                                                                                                                                                | 1.0 | 8         |
| 79 | Detection of 8-Hydroxy-2′-Deoxyguanosine Biomarker with a Screen-Printed Electrode Modified with<br>Graphene. Sensors, 2019, 19, 4297.                                                                                                                                                                                  | 2.1 | 8         |
| 80 | Pattern Recognition of p53 and KRAS in Whole Blood Samples. Journal of the Electrochemical Society, 2019, 166, B183-B186.                                                                                                                                                                                               | 1.3 | 8         |
| 81 | Simultaneous Determination of Carcinoembryonic Antigen (CEA), Carbohydrate Antigen 19-9 (CA19-9),<br>and Serum Protein p53 in Biological Samples with Protoporphyrin IX (PIX) Used for Recognition by<br>Stochastic Microsensors. Analytical Letters, 2020, 53, 2545-2558.                                              | 1.0 | 8         |
| 82 | Fast screening method for molecular recognition of islet amyloid polypeptide from whole blood samples collected from diabetic patients with disposable stochastic sensors obtained by nanolayer, and nanolayer by nanolayer deposition using cold plasma. Analytical and Bioanalytical Chemistry, 2020, 412, 4135-4141. | 1.9 | 8         |
| 83 | Chiral singleâ€walled carbon nanotubes as chiral selectors in multimode enantioselective sensors.<br>Chirality, 2021, 33, 51-58.                                                                                                                                                                                        | 1.3 | 8         |
| 84 | Facile Detection of Naphthalene with a 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-Porphine Nickel<br>(II)/N-(1-Naphthyl) Ethylenediamine Dihydrochloride Renewable Graphene Oxide Paste Electrode.<br>Journal of the Electrochemical Society, 2022, 169, 037527.                                                      | 1.3 | 8         |
| 85 | Determination ofL―andDâ€Enantiomers of Leucine Using Amperometric Biosensors Based on Diamond<br>Paste. Instrumentation Science and Technology, 2006, 34, 475-481.                                                                                                                                                      | 0.9 | 7         |
| 86 | Macrocyclic antibiotics as chiral selectors in the design of enantioselective, potentiometric<br>membrane electrodes for the determination of S-flurbiprofen. Analytical and Bioanalytical Chemistry,<br>2009, 394, 821-826.                                                                                            | 1.9 | 7         |
| 87 | Resolution of Ternary Mixture of Aspirin, Atorvastatin, and Clopidogrel by Chemometric-Assisted UV<br>Spectroscopic and Liquid Chromatography Methods. International Journal of Spectroscopy, 2013, 2013,<br>1-8.                                                                                                       | 1.4 | 7         |
| 88 | Molecular enantiorecognition of <scp>l</scp> â€glucose and <scp>d</scp> â€glucose in whole blood<br>samples. Chirality, 2018, 30, 680-685.                                                                                                                                                                              | 1.3 | 7         |
| 89 | A Screening Test for Early Diagnosis of Microcellular Bronchopulmonary Cancer-Pilot Study. Journal of Clinical Medicine, 2020, 9, 76.                                                                                                                                                                                   | 1.0 | 7         |
| 90 | Disposable Stochastic Sensors Based on Nanolayer Deposition(s) of Silver and AgC Composite on Plastic for the Assay of α-amylase in Whole Blood and Saliva. Nanomaterials, 2020, 10, 1528.                                                                                                                              | 1.9 | 7         |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Molecular Recognition and Determination of Interleukins 1β, 6, 12, and 17 in Whole Blood from Diabetic<br>Patients. Analytical Letters, 2020, 53, 2021-2033.                                                                 | 1.0 | 7         |
| 92  | Sulphur Doped Graphenes Based 3D-Needle Stochastic Sensors as New Tools for Biomedical Analysis.<br>Journal of the Electrochemical Society, 2021, 168, 037509.                                                               | 1.3 | 7         |
| 93  | Disposable Stochastic Sensor Based on Deposition of a Nanolayer of Silver on Silk for Molecular<br>Recognition of Specific Biomarkers. Journal of the Electrochemical Society, 2021, 168, 037515.                            | 1.3 | 7         |
| 94  | Sensitive Detection of Heregulin-α from Biological Samples Using a Disposable Stochastic Sensor Based<br>on Plasma Deposition of GNPs–AgPs' Nanofilms on Silk. Life, 2021, 11, 894.                                          | 1.1 | 7         |
| 95  | Stochastic biosensors based on N- and S-doped graphene for the enantioanalysis of aspartic acid in biological samples. RSC Advances, 2021, 11, 23301-23309.                                                                  | 1.7 | 7         |
| 96  | Hydrothermal Synthesis of Nitrogen, Boron Co-Doped Graphene with Enhanced Electro-Catalytic Activity for Cymoxanil Detection. Sensors, 2021, 21, 6630.                                                                       | 2.1 | 7         |
| 97  | Review—Recent Trends on the Electrochemical Sensors Used for the Determination of Tartrazine and Sunset Yellow FCF from Food and Beverage Products. Journal of the Electrochemical Society, 2022, 169, 017509.               | 1.3 | 7         |
| 98  | Stochastic microsensors based on modified graphene for pattern recognition of maspin in biological samples. Analytical and Bioanalytical Chemistry, 2022, 414, 3667-3673.                                                    | 1.9 | 7         |
| 99  | Disposable stochastic sensors for fast analysis of ibuprofen, ketoprofen, and flurbiprofen in their topical pharmaceutical formulations. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215, 114758.               | 1.4 | 7         |
| 100 | Microelectrodes based on porphyrins for the determination of ascorbic acid in pharmaceutical samples and beverages. Journal of Porphyrins and Phthalocyanines, 2012, 16, 809-816.                                            | 0.4 | 6         |
| 101 | Multimode Sensors Based on Nanostructured Materials for Simultaneous Screening of Biological<br>Fluids for Specific Breast Cancer and Hepatitis B Biomarkers. Journal of the Electrochemical Society,<br>2014, 161, B45-B48. | 1.3 | 6         |
| 102 | Stochastic microsensors as screening tools for neuron specific enolase. RSC Advances, 2014, 4, 26383-26388.                                                                                                                  | 1.7 | 6         |
| 103 | Pattern Recognition of HER-2 in Whole Blood Samples Using Stochastic Microsensors. ECS Journal of Solid State Science and Technology, 2015, 4, S3067-S3070.                                                                  | 0.9 | 6         |
| 104 | Evaluation of amperometric dot microsensors for the analysis of folic acid in pharmaceutical tablets and urine samples. Journal of Porphyrins and Phthalocyanines, 2015, 19, 679-687.                                        | 0.4 | 6         |
| 105 | Immunosensors in Clinical and Environmental Analysis. Critical Reviews in Analytical Chemistry, 2015, 45, 2-31.                                                                                                              | 1.8 | 6         |
| 106 | Stochastic sensors based on maltodextrins for screening of whole blood for neuron specific<br>enolase, carcinoembryonic antigen and epidermal growth factor receptor. Microsystem Technologies,<br>2016, 22, 25-29.          | 1.2 | 6         |
| 107 | Pattern recognition of melatonin using stochastic sensors. New Journal of Chemistry, 2019, 43, 5196-5201.                                                                                                                    | 1.4 | 6         |
| 108 | Sensing and Interaction of His-Tagged CA19-9 Antigen with Graphene-Modified Electrodes.<br>Chemosensors, 2020, 8, 112.                                                                                                       | 1.8 | 6         |

| #   | Article                                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Fast screening method for early diagnostic of gastric cancer based on utilization of a chitosan –<br>S-doped graphene - based needle stochastic sensors. Journal of Pharmaceutical and Biomedical<br>Analysis, 2022, 214, 114725.                                                                                         | 1.4 | 6         |
| 110 | Determination of (+)-3,3′,5,5′-Tetraiodo-L-thyronine (L-T4) in Serum and Pharmaceutical Formulations<br>using a Sequential Injection Analysis/Immunosensor System. Journal of Immunoassay and<br>Immunochemistry, 2008, 29, 348-355.                                                                                      | 0.5 | 5         |
| 111 | Determination of (S)-(+)-lbuprofen Using Enantioselective, Potentiometric Membrane Electrodes Based on Macrocyclic Antibiotics. Instrumentation Science and Technology, 2009, 37, 197-203.                                                                                                                                | 0.9 | 5         |
| 112 | Micro- and Nanosensors, Recent Developments and Features: A Minireview. Analytical Letters, 2010, 43, 1111-1118.                                                                                                                                                                                                          | 1.0 | 5         |
| 113 | Enantioanalysis of ketoprofen based on its interaction with C60 fullerene and its derivatives.<br>Analytical Methods, 2012, 4, 1492.                                                                                                                                                                                      | 1.3 | 5         |
| 114 | Quinine, Quinidine and Their Tert-butyl Carbomylated Derivatives as Chiral Selectors in the<br>Enantioselective, Potentiometric Membrane Electrodes Design: Their Application for the Assay of (S)<br>and (R) Enantiomers of 3,5-dinitrobenzoyl Leucine. Journal of the Electrochemical Society, 2013, 160,<br>B196-B200. | 1.3 | 5         |
| 115 | Pattern recognition of monocyte chemoattractant protein-1 (MCP-1) in whole blood samples using new platforms based on nanostructured materials. Nanoscale, 2015, 7, 14848-14853.                                                                                                                                          | 2.8 | 5         |
| 116 | Stochastic sensors designed for assessment of biomarkers specific to obesity. Journal of Pharmaceutical and Biomedical Analysis, 2016, 128, 280-285.                                                                                                                                                                      | 1.4 | 5         |
| 117 | Determination of p53 Using Graphite Based Amperometric Sensors. Journal of the Electrochemical Society, 2017, 164, B502-B505.                                                                                                                                                                                             | 1.3 | 5         |
| 118 | Molecular Recognition of Pyruvic Acid and L-Lactate in Early-Diabetic 1-Type Stage. Journal of the Electrochemical Society, 2018, 165, B659-B664.                                                                                                                                                                         | 1.3 | 5         |
| 119 | Determination of β-carotene in soft drinks using a stochastic sensor based on a graphene–porphyrin composite. Electrochemistry Communications, 2019, 109, 106581.                                                                                                                                                         | 2.3 | 5         |
| 120 | Pattern Recognition of Amino Acids in Wines. Electroanalysis, 2020, 32, 7-10.                                                                                                                                                                                                                                             | 1.5 | 5         |
| 121 | Stochastic microsensors for the assessment of DNA damage in cancer. Analytical Biochemistry, 2020, 605, 113839.                                                                                                                                                                                                           | 1.1 | 5         |
| 122 | Sochastic Sensors for the Assay of Biogenic Amines in Wines. Journal of the Electrochemical Society, 2016, 163, B252-B255.                                                                                                                                                                                                | 1.3 | 5         |
| 123 | N,S-Decorated graphenes modified with 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine manganese(III) chloride-based 3D needle stochastic sensors for enantioanalysis of arginine: a key factor in the metabolomics and early detection of gastric cancer. Analytical and Bioanalytical Chemistry, 2022, 414, 6521-6530.    | 1.9 | 5         |
| 124 | Determination of Lâ€Vesamicol in Serum Samples Using Enantioselective, Potentiometric Membrane<br>Electrodes Based on Antibiotics. Analytical Letters, 2006, 39, 675-682.                                                                                                                                                 | 1.0 | 4         |
| 125 | Enantioanalysis of S-Ketoprofen Using Enantioselective, Potentiometric Membrane Electrodes.<br>Analytical Letters, 2009, 42, 764-774.                                                                                                                                                                                     | 1.0 | 4         |
| 126 | Enantioanalysis of R-deprenyl based on its molecular interaction with C70 fullerenes. Talanta, 2010, 81, 865-870.                                                                                                                                                                                                         | 2.9 | 4         |

| #   | Article                                                                                                                                                                                                                                                               | IF         | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 127 | A Novel Ciprofloxacin Selective Membrane Electrode. Current Pharmaceutical Analysis, 2012, 8, 334-338.                                                                                                                                                                | 0.3        | 4            |
| 128 | Chitosan Based Diamond Paste Stochastic Microsensors Modified with Gold Nanoparticles Detect<br>Hepatitis C Virus Core Antigen. Electroanalysis, 2015, 27, 1842-1846.                                                                                                 | 1.5        | 4            |
| 129 | Diamond Paste-Based Stochastic Sensor for Screening of Children's Cerebrospinal Fluid. Journal of the Electrochemical Society, 2015, 162, B351-B353.                                                                                                                  | 1.3        | 4            |
| 130 | Pattern recognition of adipokines in whole blood samples using stochastic sensing. Microsystem Technologies, 2016, 22, 11-16.                                                                                                                                         | 1.2        | 4            |
| 131 | Fast screening of whole blood samples for early detection and monitoring of thyroid diseases. RSC Advances, 2017, 7, 43567-43573.                                                                                                                                     | 1.7        | 4            |
| 132 | Dot Microsensors Based on Zinc Porphyrins and Zinc Phthalocyanine for the Determination of Indigo Carmine. ECS Journal of Solid State Science and Technology, 2020, 9, 041015.                                                                                        | 0.9        | 4            |
| 133 | Subclinical hypothyroidism has no association with insulin resistance indices in adult females: A case‑control study. Experimental and Therapeutic Medicine, 2021, 22, 1033.                                                                                          | 0.8        | 4            |
| 134 | Mini-Review: Electrochemical Sensors Used for the Determination of Water- and Fat-Soluble Vitamins:<br>B, D, K. Critical Reviews in Analytical Chemistry, 2024, 54, 1-10.                                                                                             | 1.8        | 4            |
| 135 | Recent Trends in Ibuprofen and Ketoprofen Electrochemical Quantification – A Review. Critical<br>Reviews in Analytical Chemistry, 2024, 54, 61-72.                                                                                                                    | 1.8        | 4            |
| 136 | Enantioselective Determination of R-Clenbuterol Using an Enantioselective, Potentiometric Membrane<br>Electrode Based on a β-Cyclodextrin Derivative. Instrumentation Science and Technology, 2009, 37,<br>189-196.                                                   | 0.9        | 3            |
| 137 | Enantioanalysis of (-)Butaclamol Using Vancomycin and Teicoplanin as Chiral Selectors.<br>Combinatorial Chemistry and High Throughput Screening, 2010, 13, 690-693.                                                                                                   | 0.6        | 3            |
| 138 | Enantioanalysis of S-deprenyl using enantioselective, potentiometric membrane electrodes based on<br>C60 derivatives. Electrochimica Acta, 2010, 55, 1772-1777.                                                                                                       | 2.6        | 3            |
| 139 | Enantioanalysis of d-histidine based on its interaction with [5,6]fullerene-C70 and diethyl (1,2-methanofullerene-C70)-71,71-dicarboxylate. New Journal of Chemistry, 2010, 34, 1141.                                                                                 | 1.4        | 3            |
| 140 | Diamond paste based electrodes for the determination of Ag(i). Analytical Methods, 2010, 2, 650.                                                                                                                                                                      | 1.3        | 3            |
| 141 | Enantioanalysis of S-lbuprofen using [5–6] fullerene-C70and diethyl (1,2-methanofullerene) Tj ETQq1 1 0.78                                                                                                                                                            | 84314.ggBT | Ovgrlock 10/ |
| 142 | Comparative study of three modified numerical spectrophotometric methods: An application on<br>pharmaceutical ternary mixture of aspirin, atorvastatin and clopedogrel. Spectrochimica Acta - Part A:<br>Molecular and Biomolecular Spectroscopy, 2014, 128, 514-521. | 2.0        | 3            |
| 143 | Molecular recognition of HERâ€1 in wholeâ€blood samples. Journal of Molecular Recognition, 2014, 27,<br>653-658.                                                                                                                                                      | 1.1        | 3            |
| 144 | A new hypothesis of aging. Medical Hypotheses, 2015, 84, 252-257.                                                                                                                                                                                                     | 0.8        | 3            |

RALUCA-IOANA STEFAN-VAN

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | A Graphene Stochastic Sensor for the Molecular Screening of TNF-α. Journal of the Electrochemical<br>Society, 2015, 162, B245-B247.                                                                                                                 | 1.3 | 3         |
| 146 | Carbon Modified Paper Based Sensors. Journal of the Electrochemical Society, 2015, 162, B360-B362.                                                                                                                                                  | 1.3 | 3         |
| 147 | Azulene Based Stochastic Microsensor. Journal of the Electrochemical Society, 2016, 163, B563-B566.                                                                                                                                                 | 1.3 | 3         |
| 148 | Pattern Recognition of Diabetes Related Biomarkers. Electroanalysis, 2018, 30, 2628-2634.                                                                                                                                                           | 1.5 | 3         |
| 149 | Fast screening test for molecular recognition of levodopa and dopamine in biological samples using<br>3D printed stochastic microsensors. Journal of Pharmaceutical and Biomedical Analysis, 2021, 205,<br>114292.                                  | 1.4 | 3         |
| 150 | Enantioselective, Potentiometric Membrane Electrodes (EPME) Based on Maltodextrins for the<br>Determination of L-Vesamicol in Serum Samples. Current Pharmaceutical Analysis, 2011, 7, 253-257.                                                     | 0.3 | 3         |
| 151 | Chapter 3 Enantioselective, potentiometric membrane electrodes: design, mechanism of potential development and applications for pharmaceutical and biomedical analysis Comprehensive Analytical Chemistry, 2007, 49, 53-71.                         | 0.7 | 2         |
| 152 | Amperometric Immunosensor for the Determination of 2′,3′-dideoxyinosine. Analytical Letters, 2009, 42, 758-763.                                                                                                                                     | 1.0 | 2         |
| 153 | Enantioanalysis of L-Histidine Using Enantioselective, Potentiometric Membrane Electrodes Based on<br>Maltodextrins. Analytical Letters, 2011, 44, 968-975.                                                                                         | 1.0 | 2         |
| 154 | Enantioselective Surface Plasmon Resonance Sensor Based on C <sub>60</sub> Fullereneâ€Glutathione<br>Selfâ€Assembled Monolayer (SAM). Chirality, 2014, 26, 129-131.                                                                                 | 1.3 | 2         |
| 155 | Ionic liquids for the molecular enantiorecognition of freel-T3,l-T4andd-T4. RSC Advances, 2015, 5, 75451-75457.                                                                                                                                     | 1.7 | 2         |
| 156 | New Platforms for Fast Assessment of Levels of Testosterone, Dihydrotestosterone, and Estradiol in<br>Children's Saliva. Analytical Letters, 2016, 49, 335-341.                                                                                     | 1.0 | 2         |
| 157 | Disposable Stochastic Sensors for the Simultaneous Assay of Acetylcholine and Dopamine in Whole<br>Blood Samples. Analytical Letters, 2018, 51, 1927-1934.                                                                                          | 1.0 | 2         |
| 158 | Determination of Cadmium(ii), Copper(ii), Mercury(ii), and Lead(ii) in Water Using Stochastic Sensors<br>Based on Graphite and Diamond Paste Modified with 1H-Pyrrole-1-Hexanoic Acid. Analytical Letters,<br>2019, 52, 803-812.                    | 1.0 | 2         |
| 159 | Enantioanalysis of Aspartic Acid Using 3D Stochastic Sensors. Analytical Letters, 0, , 1-8.                                                                                                                                                         | 1.0 | 2         |
| 160 | No Association between 25-Hydroxyvitamin D and Insulin Resistance or Thyroid Hormone<br>Concentrations in a Romanian Observational Study. Medicina (Lithuania), 2021, 57, 25.                                                                       | 0.8 | 2         |
| 161 | Stochastic Microsensors Based on Carbon Nanotubes for Molecular Recognition of the Isocitrate Dehydrogenases 1 and 2. Nanomaterials, 2022, 12, 460.                                                                                                 | 1.9 | 2         |
| 162 | Disposable stochastic sensors obtained by nanolayer deposition of copper, graphene, and copper-graphene composite on silk for the determination of isocitrate dehydrogenases 1 and 2. Analytical and Bioanalytical Chemistry, 2022, 414, 1797-1807. | 1.9 | 2         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Sequential Injection Analysis utilizing Amperometric Biosensors as Detectors for the Simultaneous<br>Determination of L- and D-Pipecolic Acid. Instrumentation Science and Technology, 2008, 36, 355-366. | 0.9 | 1         |
| 164 | Enantioanalysis of Butaclamol Using Enantioselective Potentiometric Electrodes. Analytical Letters, 2009, 42, 1111-1118.                                                                                  | 1.0 | 1         |
| 165 | Determination of Free L-T4and Free L-T3from Blood Using the Immunosensors/Sequential Injection Analysis System. Analytical Letters, 2010, 43, 1119-1125.                                                  | 1.0 | 1         |
| 166 | Enantioselective Potentiometric Membrane Electrodes Based on Antibiotics for the Determination of L- and D-Glyceric Acids. International Journal of Electrochemistry, 2011, 2011, 1-4.                    | 2.4 | 1         |
| 167 | Electroanalysis of Oseltamivir Phosphate Using New Microelectrodes Based on Zinc Complexes with<br>Porphyrins and Phthalocyanines. Journal of the Electrochemical Society, 2012, 159, B789-B793.          | 1.3 | 1         |
| 168 | Fast Screening of Whole Blood Samples and Pharmaceutical Compounds for Enantiorecognition of<br>Free Lâ€T <sub>3</sub> , Lâ€T <sub>4</sub> , and Dâ€T <sub>4</sub> . Chirality, 2015, 27, 973-978.        | 1.3 | 1         |
| 169 | Multimode Microsensors Based on Carbon Matrices Used for the Assay of IL-6 in Whole Blood<br>Samples. ECS Journal of Solid State Science and Technology, 2015, 4, S3006-S3010.                            | 0.9 | 1         |
| 170 | Fast Screening of Tissue Samples for Glycogen. Journal of Pharmaceutical and Biomedical Analysis, 2017, 135, 16-19.                                                                                       | 1.4 | 1         |
| 171 | Molecular recognition of pyruvic acid and folic acid in whole blood. RSC Advances, 2017, 7, 50072-50078.                                                                                                  | 1.7 | 1         |
| 172 | Electroanalysis of Bisphenols A, F, and Z Using Graphene Based Stochastic Microsensors.<br>Electroanalysis, 2019, 31, 1342-1347.                                                                          | 1.5 | 1         |
| 173 | Pattern Recognition of Sweeteners in Biological Fluids, Beverages, and Ketchup using Stochastic<br>Sensors. Electroanalysis, 2020, 32, 178-184.                                                           | 1.5 | 1         |
| 174 | Nanocarbon Materials Modified with the Zinc Complex of Protoporphyrin IX, Recognized Antibiotics<br>in Water Samples. Electroanalysis, 2020, 32, 1060-1064.                                               | 1.5 | 1         |
| 175 | Electrochemical Determination of 8-Nitroguanine and 8-Hydroxy-2 <sup>-</sup> Deoxyguanosine in Urine and Whole Blood Using Stochastic Sensors. Analytical Letters, 2021, 54, 729-741.                     | 1.0 | 1         |
| 176 | Stochastic Sensors for the Enantioselective Determination of Serine in Blood for the Early Diagnosis of Breast Cancer. Analytical Letters, 0, , 1-8.                                                      | 1.0 | 1         |
| 177 | In-House Validated Map of Lymph Node Stations in a Prospective Cohort of Colorectal Cancer: A Tool<br>for a Better Preoperative Staging. Journal of Oncology, 2022, 2022, 1-10.                           | 0.6 | 1         |
| 178 | Minireview: Current Trends and Future Challenges for the Determination of Patulin in Food<br>Products. Analytical Letters, 0, , 1-17.                                                                     | 1.0 | 1         |
| 179 | Procedure 3 Enantioanalysis of S-captopril using an enantioselective, potentiometric membrane electrode. Comprehensive Analytical Chemistry, 2007, 49, e21-e23.                                           | 0.7 | 0         |
| 180 | Enantioanalysis of L-Proline Using C <sub>60</sub> Fullerenes as Chiral Selectors. Analytical Letters, 2009, 42, 323-329.                                                                                 | 1.0 | 0         |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Utilization of an Enantioselective Surface Plasmon Resonance Electrode for the Selection of the Best<br>C <sub>70</sub> Fullerene as Chiral Selector for the Enantioanalysis of L-Cysteine. Preparative<br>Biochemistry and Biotechnology, 2009, 39, 142-146. | 1.0 | 0         |
| 182 | New Multimode Sensors Based on Nanostrucured Materials for Simultaneous Screening of Biological<br>Fluids for Specific Breast Cancer and Hepatitis B Biomarkers. ECS Transactions, 2013, 50, 61-67.                                                           | 0.3 | 0         |
| 183 | Enantioselective, Potentiometric Membrane Electrodes Based on C <sub>70</sub> Fullerenes for the<br>Enantioanalysis of S-Clenbuterol in Serum. Journal of the Electrochemical Society, 2015, 162,<br>H477-H480.                                               | 1.3 | Ο         |
| 184 | Validation of Disposable Stochastic Sensors Based on Nanolayer Depositon(s) of Silver and AgC<br>Composite on Plastic for the Assay of α-Amylase in Whole Blood and Saliva. Proceedings (mdpi), 2020,<br>55, 4.                                               | 0.2 | 0         |
| 185 | Validation of a Screening Method Based on a Needle Stochastic Sensor for the Determination of Interleukins 11², 6, and 12 in Biological Samples. Proceedings (mdpi), 2020, 55, 14.                                                                            | 0.2 | 0         |
| 186 | Quality and Reliability in Analytical Chemistry. Proceedings (mdpi), 2020, 55, .                                                                                                                                                                              | 0.2 | 0         |
| 187 | Characterization of Low-Cost, Robust, Graphene-Based Amperometric Dot Microsensors for the Determination of Dopamine. Analytical Letters, 2021, 54, 2921-2928.                                                                                                | 1.0 | 0         |
| 188 | Cyclodextrins Based Enantioselective, Potentiometric Membrane Electrodes (EPME) and their<br>Applications for Enantioanalysis of L-Cysteine in Urine. Current Pharmaceutical Analysis, 2011, 7,<br>258-261.                                                   | 0.3 | 0         |
| 189 | Design of Potentiometric Sensors Based on Interaction of Cyclodextrins with the Enantiomer of Interest. Current Drug Therapy, 2015, 9, 250-255.                                                                                                               | 0.2 | 0         |
| 190 | Review—Progress in Electroanalysis of p53, CEA, and CA19–9. Journal of the Electrochemical Society, 2022, 169, 037518.                                                                                                                                        | 1.3 | 0         |