Esther RodrÃ-guez-Belmonte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1553587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring the taxonomical and functional profile of As Burgas hot spring focusing on thermostable β-galactosidases. Scientific Reports, 2021, 11, 101.	1.6	11
2	Comparative Metagenomic Analysis of Two Hot Springs From Ourense (Northwestern Spain) and Others Worldwide. Frontiers in Microbiology, 2021, 12, 769065.	1.5	3
3	The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers, 2020, 12, 2435.	1.7	11
4	The Challenges and Opportunities of LncRNAs in Ovarian Cancer Research and Clinical Use. Cancers, 2020, 12, 1020.	1.7	26
5	Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications. Cancers, 2019, 11, 1729.	1.7	12
6	HMGB proteins involved in TOR signaling as general regulators of cell growth by controlling ribosome biogenesis. Current Genetics, 2018, 64, 1205-1213.	0.8	15
7	Heat-Loving Î ² -Galactosidases from Cultured and Uncultured Microorganisms. Current Protein and Peptide Science, 2018, 19, 1224-1234.	0.7	4
8	Advances of Functional Metagenomics in Harnessing Thermozymes. , 2018, , 289-307.		3
9	Cellulases from Thermophiles Found by Metagenomics. Microorganisms, 2018, 6, 66.	1.6	46
10	Delineating the HMGB1 and HMGB2 interactome in prostate and ovary epithelial cells and its relationship with cancer. Oncotarget, 2018, 9, 19050-19064.	0.8	9
11	Archaeal Biocommunication in Hot Springs Revealed by Metagenomics. , 2017, , 85-101.		0
12	High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-17.	1.9	29
13	Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Frontiers in Microbiology, 2016, 7, 1521.	1.5	98
14	Improved bioethanol production in an engineered K luyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI 1. Microbial Biotechnology, 2015, 8, 319-330.	2.0	15
15	KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis. Fungal Genetics and Biology, 2015, 82, 95-103.	0.9	7
16	Proteomic Analyses Reveal that Sky1 Modulates Apoptosis and Mitophagy in Saccharomyces cerevisiae Cells Exposed to Cisplatin. International Journal of Molecular Sciences, 2014, 15, 12573-12590.	1.8	3
17	KlRox1p contributes to yeast resistance to metals and is necessary for KlYCF1 expression in the presence of cadmium. Gene, 2012, 497, 27-37.	1.0	14
18	SKY1 and IXR1 interactions, their effects on cisplatin and spermine resistance in Saccharomyces cerevisiae. Canadian Journal of Microbiology, 2012, 58, 184-188.	0.8	5

#	Article	IF	CITATIONS
19	lxr1p and the control of the Saccharomyces cerevisiae hypoxic response. Applied Microbiology and Biotechnology, 2012, 94, 173-184.	1.7	22
20	Comparative transcriptome analysis of yeast strains carrying slt2, rlm1, and pop2 deletions. Genome, 2011, 54, 99-109.	0.9	3
21	Two Proteins with Different Functions Are Derived from the <i>KlHEM13</i> Gene. Eukaryotic Cell, 2011, 10, 1331-1339.	3.4	1
22	Functional characterization of KlHAP1: A model to foresee different mechanisms of transcriptional regulation by Hap1p in yeasts. Gene, 2007, 405, 96-107.	1.0	18
23	A functional analysis of <i>KlSRB10</i> : implications in <i>Kluyveromyces lactis</i> transcriptional regulation. Yeast, 2007, 24, 1061-1073.	0.8	2
24	TheKlSRB10 gene fromKluyveromyces lactis. Yeast, 2004, 21, 511-518.	0.8	5
25	Engineered autolytic yeast strains secreting Kluyveromyces lactis β-galactosidase for production of heterologous proteins in lactose media. Journal of Biotechnology, 2004, 109, 131-137.	1.9	27
26	Genome-Wide Analysis of the Yeast Transcriptome Upon Heat and Cold Shock. Comparative and Functional Genomics, 2003, 4, 366-375.	2.0	18
27	Identification of a Novel Protein, PDIP38, That Interacts with the p50 Subunit of DNA Polymerase δ and Proliferating Cell Nuclear Antigen. Journal of Biological Chemistry, 2003, 278, 10041-10047.	1.6	91
28	Genome-Wide analysis of yeast transcription upon calcium shortage. Cell Calcium, 2002, 32, 83-91.	1.1	9
29	Metabolic engineering for direct lactose utilization by Saccharomyces cerevisiae. Biotechnology Letters, 2002, 24, 1391-1396.	1.1	10
30	Identification of a Fourth Subunit of Mammalian DNA Polymerase δ. Journal of Biological Chemistry, 2000, 275, 18739-18744.	1.6	87
31	The Kluyveromyces lactis gene KlGSK-3 combines functions which in Saccharomyces cerevisiae are performed by MCK1 and MSD1. Current Genetics, 1998, 33, 262-267.	0.8	2
32	PICDI, a simple program for codon bias calculation. Molecular Biotechnology, 1996, 5, 191-195.	1.3	7
33	Sequence analysis of a 10 kb DNA fragment from yeast chromosome VII reveals a novel member of the dnaJ family. , 1996, 12, 145-148.		4
34	Identification of a putative methylenetetrahydrofolate reductase by sequence analysis of a 6·8 kb DNA fragment of yeast chromosome VII. Yeast, 1996, 12, 1047-1051.	0.8	8
35	Covalent immobilization of β-galactosidase on corn grits. A system for lactose hydrolysis without diffusional resistance. Process Biochemistry, 1994, 29, 7-12.	1.8	27
36	Codon usage in Kluyveromyces lactis and in yeast cytochrome c-encoding genes. Gene, 1994, 139, 43-49.	1.0	71

#	Article	IF	CITATIONS
37	Permeabilization ofKluyveromyces lactis cells for milk whey saccharification: A comparison of different treatments. Biotechnology Letters, 1992, 6, 289-292.	0.5	29