Per L Gregersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1553576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant senescence and crop productivity. Plant Molecular Biology, 2013, 82, 603-622.	3.9	510
2	Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biology, 2008, 10, 37-49.	3.8	287
3	Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2007, 5, 192-206.	8.3	204
4	Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology, 2003, 62, 333-346.	2.5	166
5	The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular Plant Pathology, 2002, 3, 135-144.	4.2	163
6	Molecular Characterization of the Oxalate Oxidase Involved in the Response of Barley to the Powdery Mildew Fungus1. Plant Physiology, 1998, 117, 33-41.	4.8	139
7	The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 2007, 65, 137-150.	3.9	136
8	An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Molecular Biology, 1998, 36, 101-112.	3.9	134
9	A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. Journal of Experimental Botany, 2009, 60, 1333-1347.	4.8	121
10	Interaction of barley powdery mildew effector candidate <scp>CSEP0055</scp> with the defence protein <scp>PR17c</scp> . Molecular Plant Pathology, 2012, 13, 1110-1119.	4.2	115
11	NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops. Plants, 2015, 4, 412-448.	3.5	108
12	A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Molecular Biology, 1998, 37, 849-857.	3.9	105
13	Induced Genetic Variation in Crop Plants by Random or Targeted Mutagenesis: Convergence and Differences. Frontiers in Plant Science, 2019, 10, 1468.	3.6	99
14	cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis. Physiological and Molecular Plant Pathology, 1992, 40, 395-409.	2.5	98
15	Differential gene transcript accumulation in barley leaf epidermis and mesophyll in response to attack byBlumeria graminisf.sp.hordei(syn.Erysiphe graminisf.sp.hordei). Physiological and Molecular Plant Pathology, 1997, 51, 85-97.	2.5	93
16	Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots. BMC Research Notes, 2011, 4, 302.	1.4	88
17	Purification, Characterization, and Molecular Cloning of Basic PR-1-Type Pathogenesis-Related Proteins from Barley. Molecular Plant-Microbe Interactions, 1994, 7, 267.	2.6	88
18	Senescence-associated Barley NAC (NAM, ATAF1,2, CUC) Transcription Factor Interacts with Radical-induced Cell Death 1 through a Disordered Regulatory Domain. Journal of Biological Chemistry, 2011, 286, 35418-35429.	3.4	84

Per L Gregersen

#	Article	IF	CITATIONS
19	Benzoxazinoids: Cereal phytochemicals with putative therapeutic and healthâ€protecting properties. Molecular Nutrition and Food Research, 2015, 59, 1324-1338.	3.3	71
20	A flavonoid 7-O-methyltransferase is expressed in barley leaves in response to pathogen attack. Plant Molecular Biology, 1998, 36, 219-227.	3.9	70
21	Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves. Journal of Experimental Botany, 2014, 65, 4009-4022.	4.8	68
22	Identification of predominant genes involved in regulation and execution of senescence-associated nitrogen remobilization in flag leaves of field grown barley. Journal of Experimental Botany, 2014, 65, 3963-3973.	4.8	65
23	A Microarray-Based Comparative Analysis of Gene Expression Profiles During Grain Development in Transgenic and Wild Type Wheat. Transgenic Research, 2005, 14, 887-905.	2.4	64
24	Regulation of basal resistance by a powdery mildewâ€induced cysteineâ€rich receptorâ€like protein kinase in barley. Molecular Plant Pathology, 2012, 13, 135-147.	4.2	62
25	The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Molecular Biology, 2013, 83, 577-590.	3.9	54
26	A pathogenâ€induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant Journal, 1992, 2, 815-820.	5.7	53
27	Comparison of the levels of bioactive benzoxazinoids in different wheat and rye fractions and the transformation of these compounds in homemade foods. Food Chemistry, 2013, 141, 444-450.	8.2	51
28	A putative O-methyltransferase from barley is induced by fungal pathogens and UV light. Plant Molecular Biology, 1994, 26, 1797-1806.	3.9	39
29	Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans. Molecular Nutrition and Food Research, 2013, 57, 1847-1858.	3.3	37
30	De novo assembly of Agave sisalana transcriptome in response to drought stress provides insight into the tolerance mechanisms. Scientific Reports, 2019, 9, 396.	3.3	36
31	Biosynthesis and chemical transformation of benzoxazinoids in rye during seed germination and the identification of a rye Bx6-like gene. Phytochemistry, 2017, 140, 95-107.	2.9	33
32	Barley plants over-expressing the NAC transcription factor gene <i>HvNAC005</i> show stunting and delay in development combined with early senescence. Journal of Experimental Botany, 2016, 67, 5259-5273.	4.8	30
33	The Barley/Blumeria (Syn. Erysiphe) Graminis Interaction. , 2000, , 77-100.		25
34	Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS ONE, 2018, 13, e0209769.	2.5	22
35	Induction of Resistance in Barley against <i>Erysiphe graminis</i> f. sp. <i>hordei</i> after Preinoculation with the Saprophytic Fungus, <i>Cladosporium macrocarpum</i> . Journal of Phytopathology, 1989, 124, 128-136.	1.0	21
36	Correlation of Deoxynivalenol Accumulation in Fusarium-Infected Winter and Spring Wheat Cultivars with Secondary Metabolites at Different Growth Stages. Journal of Agricultural and Food Chemistry, 2016, 64, 4545-4555.	5.2	21

Per L Gregersen

#	Article	IF	CITATIONS
37	Polyamines – A New Metabolic Switch: Crosstalk With Networks Involving Senescence, Crop Improvement, and Mammalian Cancer Therapy. Frontiers in Plant Science, 2019, 10, 859.	3.6	21
38	Early induction of new mRNAs accompanies the resistance reaction of barley to the wheat pathogen, Erysiphe graminis f.sp. tritici. Physiological and Molecular Plant Pathology, 1990, 36, 471-481.	2.5	20
39	Up-regulation of the ascorbate-dependent antioxidative system in barley leaves during powdery mildew infection. Molecular Plant Pathology, 2000, 1, 303-314.	4.2	19
40	Genetic mapping of the barley lodging resistance locus <i><scp>E</scp>rectoidesâ€k</i> . Plant Breeding, 2016, 135, 420-428.	1.9	17
41	Development of mlo-based resistance in tetraploid wheat against wheat powdery mildew. Theoretical and Applied Genetics, 2019, 132, 3009-3022.	3.6	16
42	Expression analysis of the polyphenol oxidase gene in response to signaling molecules, herbivory and wounding in antisense transgenic tobacco plants. 3 Biotech, 2019, 9, 55.	2.2	16
43	cDNA Cloning and Characterization of mRNAs Induced in Barley by the Fungal Pathogen, Erysiphe Graminis. Developments in Plant Pathology, 1993, , 304-307.	0.1	9
44	Bioactive small molecules in commercially available cereal food: Benzoxazinoids. Journal of Food Composition and Analysis, 2017, 64, 213-222.	3.9	9
45	Photosynthesis and Leaf Senescence as Determinants of Plant Productivity. Biotechnology in Agriculture and Forestry, 2014, , 113-138.	0.2	5
46	A novel approach to the generation of seamless constructs for plant transformation. Plant Methods, 2014, 10, 10.	4.3	4
47	Stepwise mass spectrometryâ€based approach for confirming the presence of benzoxazinoids in herbs and vegetables. Phytochemical Analysis, 2021, 32, 283-297.	2.4	4
48	Analysis of barley mutants ert-c.1 and ert-d.7 reveals two loci with additive effect on plant architecture. Planta, 2021, 254, 9.	3.2	3