Kui Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1553240/publications.pdf

Version: 2024-02-01

		147726	182361
90	3,019	31	51
papers	citations	h-index	g-index
96	96	96	3341
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Distribution visualization of the chlorinated disinfection byproduct of diazepam in zebrafish with desorption electrospray ionization mass spectrometry imaging. Talanta, 2022, 237, 122919.	2.9	9
2	Equisetin is an anti-obesity candidate through targeting $11\hat{l}^2$ -HSD1. Acta Pharmaceutica Sinica B, 2022, 12, 2358-2373.	5.7	5
3	Antibacterial activities of plant-derived xanthones. RSC Medicinal Chemistry, 2022, 13, 107-116.	1.7	12
4	Host-acting antibacterial compounds combat cytosolic bacteria. Trends in Microbiology, 2022, 30, 761-777.	3.5	12
5	Pyocyanin Modulates Gastrointestinal Transformation and Microbiota. Journal of Agricultural and Food Chemistry, 2022, 70, 2722-2732.	2.4	4
6	Collateral sensitivity to pleuromutilins in vancomycin-resistant Enterococcus faecium. Nature Communications, 2022, 13, 1888.	5.8	12
7	A Rigid Nanoplatform for Precise and Responsive Treatment of Intracellular Multidrug-Resistant Bacteria. Engineering, 2022, 15, 57-66.	3.2	7
8	Chlorine disinfection byproduct of diazepam affects nervous system function and possesses gender-related difference in zebrafish. Ecotoxicology and Environmental Safety, 2022, 238, 113568.	2.9	2
9	Lipid Droplet-Specific Red Aggregation-Induced Emission Luminogens: Fast Light-Up of Gram-Positive Pathogens for Identification of Bacteria., 2022, 4, 1523-1530.		10
10	Sodium dehydroacetate induces cardiovascular toxicity associated with Ca2+ imbalance in zebrafish. Ecotoxicology and Environmental Safety, 2021, 208, 111613.	2.9	9
11	Sodium dehydroacetate exposure decreases locomotor persistence and hypoxia tolerance in zebrafish. Environmental Research, 2021, 195, 110276.	3.7	8
12	A Marine Antibiotic Kills Multidrug-Resistant Bacteria without Detectable High-Level Resistance. ACS Infectious Diseases, 2021, 7, 884-893.	1.8	20
13	Resident bacteria contribute to opportunistic infections of the respiratory tract. PLoS Pathogens, 2021, 17, e1009436.	2.1	11
14	Efficient Killing of Multidrugâ€Resistant Internalized Bacteria by AlEgens In Vivo. Advanced Science, 2021, 8, 2001750.	5.6	49
15	Single Tungsten Atom-Modified Cotton Fabrics for Visible-Light-Driven Photocatalytic Degradation and Antibacterial Activity. ACS Applied Bio Materials, 2021, 4, 4345-4353.	2.3	8
16	Targeting Multidrugâ€Resistant Bacteria: Efficient Killing of Multidrugâ€Resistant Internalized Bacteria by AlEgens In Vivo (Adv. Sci. 9/2021). Advanced Science, 2021, 8, 2170051.	5.6	1
17	A Potential High-Risk Clone of Pseudomonas aeruginosa ST463. Frontiers in Microbiology, 2021, 12, 670202.	1.5	15
18	Plant Natural Flavonoids Against Multidrug Resistant Pathogens. Advanced Science, 2021, 8, e2100749.	5.6	148

#	Article	IF	CITATIONS
19	Characterization of Bacillus Species from Market Foods in Beijing, China. Processes, 2021, 9, 866.	1.3	8
20	Genomic and Phenotypic Analysis of Persistent Carbapenem-Resistant <i>Klebsiella pneumoniae</i> Isolates from a 5-Year Hospitalized Patient. Microbial Drug Resistance, 2021, 27, 1117-1125.	0.9	2
21	Chlorinated disinfection byproducts of diazepam perturb cell metabolism and induce behavioral toxicity in zebrafish larvae. Ecotoxicology and Environmental Safety, 2021, 220, 112416.	2.9	6
22	Extracellular matrix stiffness modulates host-bacteria interactions and antibiotic therapy of bacterial internalization. Biomaterials, 2021, 277, 121098.	5.7	11
23	Equisetin Restores Colistin Sensitivity against Multi-Drug Resistant Gram-Negative Bacteria. Antibiotics, 2021, 10, 1263.	1.5	12
24	Emerging Risks in Food: Probiotic Enterococci Pose a Threat to Public Health through the Food Chain. Foods, 2021, 10, 2846.	1.9	4
25	Toxins and mobile antimicrobial resistance genes in Bacillus probiotics constitute a potential risk for One Health. Journal of Hazardous Materials, 2020, 382, 121266.	6.5	40
26	Gelsedine-type alkaloids: Discovery of natural neurotoxins presented in toxic honey. Journal of Hazardous Materials, 2020, 381, 120999.	6.5	20
27	Antibiotic Therapy: Sublethal Levels of Antibiotics Promote Bacterial Persistence in Epithelial Cells (Adv. Sci. 18/2020). Advanced Science, 2020, 7, 2070104.	5.6	0
28	Combined tetraphenylethylene fluorogens with positive charge for imaging capsule-covered pathogens. Analyst, The, 2020, 145, 6435-6440.	1.7	6
29	Synergistic effect on antiâ€methicillinâ€resistant <i>Staphylococcus aureus</i> among combinations of αâ€mangostinâ€rich extract, lawsone methyl ether and ampicillin. Letters in Applied Microbiology, 2020, 71, 510-519.	1.0	13
30	Characterization of Bacillus cereus in Dairy Products in China. Toxins, 2020, 12, 454.	1.5	34
31	Sublethal Levels of Antibiotics Promote Bacterial Persistence in Epithelial Cells. Advanced Science, 2020, 7, 1900840.	5.6	36
32	Nature-Inspired (di)Azine-Bridged Bisindole Alkaloids with Potent Antibacterial <i>In Vitro</i> and <i>In Vivo</i> Efficacy against Methicillin-Resistant <i>Staphylococcus aureus</i> Journal of Medicinal Chemistry, 2020, 63, 12623-12641.	2.9	26
33	Diazepam and Its Disinfection Byproduct Promote the Early Development of Nervous System in Zebrafish Embryos. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	1.9	0
34	Etv5 safeguards trophoblast stem cells differentiation from mouse EPSCs by regulating fibroblast growth factor receptor 2. Molecular Biology Reports, 2020, 47, 9259-9269.	1.0	2
35	A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nature Microbiology, 2020, 5, 1040-1050.	5.9	236
36	Metformin Restores Tetracyclines Susceptibility against Multidrug Resistant Bacteria. Advanced Science, 2020, 7, 1902227.	5.6	104

#	Article	IF	CITATIONS
37	Prevalence of pathogens harbouring mobile antimicrobial resistance genes and virulence factors in retail beef and mutton. FEMS Microbiology Letters, 2020, 367, .	0.7	6
38	The prevalence of pathogens causing bovine mastitis and their associated risk factors in 15 large dairy farms in China: An observational study. Veterinary Microbiology, 2020, 247, 108757.	0.8	34
39	Programmable antibiotic delivery to combat methicillin-resistant Staphylococcus aureus through precision therapy. Journal of Controlled Release, 2020, 321, 710-717.	4.8	16
40	<p>Characterization of Phenotypic and Genotypic Traits of Klebsiella pneumoniae from Lung Cancer Patients with Respiratory Infection</p> . Infection and Drug Resistance, 2020, Volume 13, 237-245.	1.1	10
41	Berichtigung: Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcus aureus</i> In Vivo. Angewandte Chemie, 2020, 132, 5925-5925.	1.6	0
42	A broad-spectrum antibiotic adjuvant SLAP-S25: one stone many birds. Microbial Cell, 2020, 7, 215-217.	1.4	5
43	Characteristics of a transferable & amp; lt; italic & amp; gt; tet & amp; lt; /italic & amp; gt; (45) gene conferring resistance to tetracyclines in probiotic & amp; lt; italic & amp; gt; Bacillus cereus & amp; lt; /italic & amp; gt; Chinese Science Bulletin, 2020, 65, 3619-3625.	0.4	0
44	Natural Flavones from <i>Morus alba</i> against Methicillin-Resistant <i>Staphylococcus aureus</i> via Targeting the Proton Motive Force and Membrane Permeability. Journal of Agricultural and Food Chemistry, 2019, 67, 10222-10234.	2.4	67
45	Antibacterial Effect and Mode of Action of Flavonoids From Licorice Against Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 2019, 10, 2489.	1.5	73
46	Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Natural Product Reports, 2019, 36, 573-592.	5.2	103
47	Natural Products That Target Virulence Factors in Antibiotic-Resistant <i>Staphylococcus aureus</i> Journal of Agricultural and Food Chemistry, 2019, 67, 13195-13211.	2.4	89
48	Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicology Research, 2019, 8, 262-269.	0.9	58
49	Ca2+ protect zebrafish embryos from water acidification. Ecotoxicology and Environmental Safety, 2019, 172, 65-71.	2.9	5
50	Multifaceted toxin profile, an approach toward a better understanding of probiotic <i>Bacillus cereus</i> . Critical Reviews in Toxicology, 2019, 49, 342-356.	1.9	29
51	DMOA-based meroterpenoids with diverse scaffolds from the sponge-associated fungus Penicillium brasilianum. Tetrahedron, 2019, 75, 2193-2205.	1.0	18
52	Universal antibiotic tolerance arising from antibiotic-triggered accumulation of pyocyanin in Pseudomonas aeruginosa. PLoS Biology, 2019, 17, e3000573.	2.6	54
53	Discovery of Linear Low-Cationic Peptides to Target Methicillin-Resistant <i>Staphylococcus aureus</i> in Vivo. ACS Infectious Diseases, 2019, 5, 123-130.	1.8	22
54	Macrolides induce severe cardiotoxicity and developmental toxicity in zebrafish embryos. Science of the Total Environment, 2019, 649, 1414-1421.	3.9	58

#	Article	IF	CITATIONS
55	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie, 2018, 130, 4022-4026.	1.6	15
56	Functionalized Gold Nanoclusters Identify Highly Reactive Oxygen Species in Living Organisms. Advanced Functional Materials, 2018, 28, 1702026.	7.8	92
57	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie - International Edition, 2018, 57, 3958-3962.	7.2	190
58	Persistent carbapenem-resistant Klebsiella pneumoniae: a Trojan horse. Lancet Infectious Diseases, The, 2018, 18, 22-23.	4.6	17
59	Hansforesters A–M, polyesters from the sponge-associated fungus <i>Hansfordia sinuosae</i> with antibacterial activities. RSC Advances, 2018, 8, 39756-39768.	1.7	11
60	Sorbicillinoid-Based Metabolites from a Sponge-Derived Fungus Trichoderma saturnisporum. Marine Drugs, 2018, 16, 226.	2.2	35
61	Electrodeformation-Based Biomechanical Chip for Quantifying Global Viscoelasticity of Cancer Cells Regulated by Cell Cycle. Analytical Chemistry, 2018, 90, 8370-8378.	3.2	30
62	The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food and Chemical Toxicology, 2018, 118, 745-752.	1.8	79
63	Frontispiece: A Biosurfactantâ€Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angewandte Chemie - International Edition, 2017, 56, .	7.2	0
64	A Biosurfactantâ€Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angewandte Chemie - International Edition, 2017, 56, 1486-1490.	7.2	89
65	Frontispiz: A Biosurfactantâ€Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angewandte Chemie, 2017, 129, .	1.6	0
66	A Biosurfactantâ€Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angewandte Chemie, 2017, 129, 1508-1512.	1.6	67
67	Broad-spectrum immunoaffinity cleanup for the determination of aflatoxins B 1 , B 2 , G 1 , G 2 , M 1 , M 2 in Ophiocordyceps sinensis and its pharmaceutical preparations by ultra performance liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2017. 1068-1069. 112-118.	1.2	13
68	Programmable assembly of pressure sensors using pattern-forming bacteria. Nature Biotechnology, 2017, 35, 1087-1093.	9.4	94
69	Berichtigung: A Biosurfactantâ€Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angewandte Chemie, 2017, 129, 5743-5743.	1.6	0
70	Non-hemolytic enterotoxin of <i>Bacillus cereus </i> induces apoptosis in Vero cells. Cellular Microbiology, 2017, 19, e12684.	1.1	15
71	Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China. Frontiers in Microbiology, 2016, 7, 718.	1.5	63
72	Evaluation of the Toxicity and Toxicokinetics of Cereulide from an Emetic Bacillus cereus Strain of Milk Origin. Toxins, 2016, 8, 156.	1.5	41

#	Article	IF	CITATIONS
73	Characterization of <i>Bacillus cereus </i> isolates from local dairy farms in China. FEMS Microbiology Letters, 2016, 363, fnw096.	0.7	33
74	Simultaneous detection and comparative pharmacokinetics of amoxicillin, clavulanic acid and prednisolone in cows' milk by UPLC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1008, 74-80.	1.2	24
75	Formation of small transmembrane pores: An intermediate stage on the way to Bacillus cereus non-hemolytic enterotoxin (Nhe) full pores in the absence of NheA. Biochemical and Biophysical Research Communications, 2016, 469, 613-618.	1.0	25
76	Multiplexed microfluidic blotting of proteins and nucleic acids by parallel, serpentine microchannels. Lab on A Chip, 2015, 15, 105-112.	3.1	21
77	Development of a Microsphere-Based Fluorescence Immunochromatographic Assay for Monitoring Lincomycin in Milk, Honey, Beef, and Swine Urine. Journal of Agricultural and Food Chemistry, 2014, 62, 12061-12066.	2.4	65
78	Determination of Salbutamol, Clenbuterol, and Brombuterol in Urine by a Highly Sensitive Chemiluminescence Enzyme Immunoassay. Analytical Letters, 2014, 47, 2761-2773.	1.0	11
79	Recent Developments in Antibody-Based Assays for the Detection of Bacterial Toxins. Toxins, 2014, 6, 1325-1348.	1.5	48
80	Ordered self-assembly of proteins for computation in mammalian cells. Chemical Communications, 2014, 50, 676-678.	2.2	16
81	Enzymatic Assay for Cu(II) with Horseradish Peroxidase and Its Application in Colorimetric Logic Gate. Analytical Chemistry, 2013, 85, 7029-7032.	3.2	65
82	Versatile antibody-sensing Boolean logic for the simultaneous detection of multiple bacterial toxins. Chemical Communications, 2013, 49, 9314.	2.2	6
83	A cellular logic circuit for the detection of bacterial pore-forming toxins. Chemical Communications, 2013, 49, 5198.	2.2	10
84	Rapid and Sensitive Fluoroimmunoassay Based on Quantum Dots for Detection of Melamine in Milk. Analytical Letters, 2013, 46, 275-285.	1.0	12
85	Complex Formation between NheB and NheC Is Necessary to Induce Cytotoxic Activity by the Three-Component Bacillus cereus Nhe Enterotoxin. PLoS ONE, 2013, 8, e63104.	1.1	38
86	Quantification of Proteins by Functionalized Gold Nanoparticles Using Click Chemistry. Analytical Chemistry, 2012, 84, 4267-4270.	3.2	82
87	Sensitive detection of glucose based on gold nanoparticles assisted silver mirror reaction. Analyst, The, 2011, 136, 2893.	1.7	47
88	Simultaneous detection of multiple chemical residues in milk using broad-specificity antibodies in a hybrid immunosorbent assay. Biosensors and Bioelectronics, 2011, 26, 2716-2719.	5.3	52
89	Simultaneous Determination of Avermectin and Milbemycin Residues in Bovine Tissue by Pressurized Solvent Extraction and LC with Fluorescence Detection. Chromatographia, 2010, 72, 1089-1095.	0.7	12
90	Simultaneous determination of five tetracycline and macrolide antibiotics in feeds using HPCE. Journal of Separation Science, 2009, 32, 4254-4260.	1.3	46