David C Zappulla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1553220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 4-Base-Pair Core-Enclosing Helix in Telomerase RNA Is Essential for Activity and for Binding to the Telomerase Reverse Transcriptase Catalytic Protein Subunit. Molecular and Cellular Biology, 2020, 40,	2.3	3
2	Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions. Molecules, 2020, 25, 2750.	3.8	8
3	Repositioning the Sm-Binding Site in Saccharomyces cerevisiae Telomerase RNA Reveals RNP Organizational Flexibility and Sm-Directed 3′-End Formation. Non-coding RNA, 2020, 6, 9.	2.6	6
4	Structural Insights into Yeast Telomerase Recruitment to Telomeres. Cell, 2018, 172, 331-343.e13.	28.9	76
5	Long Noncoding RNAs in the Yeast S.Âcerevisiae. Advances in Experimental Medicine and Biology, 2017, 1008, 119-132.	1.6	16
6	Identification of novel noncoding transcripts in telomerase-negative yeast using RNA-seq. Scientific Reports, 2016, 6, 19376.	3.3	8
7	Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity. Molecular and Cellular Biology, 2016, 36, 251-261.	2.3	8
8	A second essential function of the Est1-binding arm of yeast telomerase RNA. Rna, 2015, 21, 862-876.	3.5	20
9	Refined secondary-structure models of the core of yeast and human telomerase RNAs directed by SHAPE. Rna, 2015, 21, 254-261.	3.5	20
10	The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. ELife, 2015, 4, .	6.0	43
11	RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. EMBO Journal, 2013, 32, 2980-2993.	7.8	16
12	Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo. Rna, 2012, 18, 1666-1678.	3.5	17
13	Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP. Rna, 2011, 17, 298-311.	3.5	32
14	Inhibition of yeast telomerase action by the telomeric ssDNA-binding protein, Cdc13p. Nucleic Acids Research, 2009, 37, 354-367.	14.5	26
15	A Flexible Template Boundary Element in the RNA Subunit of Fission Yeast Telomerase. Journal of Biological Chemistry, 2008, 283, 24224-24233.	3.4	37
16	RNA as a Flexible Scaffold for Proteins: Yeast Telomerase and Beyond. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 217-224.	1.1	84
17	Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs. BMC Molecular Biology, 2006, 7, 40.	3.0	27
18	A miniature yeast telomerase RNA functions in vivo and reconstitutes activity in vitro. Nature Structural and Molecular Biology, 2005, 12, 1072-1077.	8.2	80

DAVID C ZAPPULLA

#	Article	IF	CITATIONS
19	From The Cover: Yeast telomerase RNA: A flexible scaffold for protein subunits. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10024-10029.	7.1	211
20	One-Hybrid Screens at the Saccharomyces cerevisiae HMR Locus Identify Novel Transcriptional Silencing Factors. Genetics, 2004, 166, 631-635.	2.9	17
21	Esc1, a Nuclear Periphery Protein Required for Sir4-Based Plasmid Anchoring and Partitioning. Molecular and Cellular Biology, 2002, 22, 8292-8301.	2.3	131
22	Control of Replication Timing by a Transcriptional Silencer. Current Biology, 2002, 12, 869-875.	3.9	60
23	Perinuclear localization of chromatin facilitates transcriptional silencing. Nature, 1998, 394, 592-595.	27.8	433