Christopher K Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1553204/publications.pdf

Version: 2024-02-01

48 papers

1,992 citations

304368 22 h-index 253896 43 g-index

48 all docs 48 docs citations

48 times ranked

 $\begin{array}{c} 2100 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	The newly-assisted catalytic mechanism of surface hydroxyl species performed as the promoter in syngas-to-C2 species on the Cu-based bimetallic catalysts. Green Energy and Environment, 2023, 8, 487-498.	4.7	2
2	The crucial role of deoxygenation in syngas refinement and carbon dioxide utilization during chemical looping-based biomass gasification. Chemical Engineering Journal, 2022, 428, 132068.	6.6	40
3	Enhanced Fe ₂ O ₃ /Al ₂ O ₃ Oxygen Carriers for Chemical Looping Steam Reforming of Methane with Different Mg Ratios. Industrial & Differen	1.8	8
4	Modification of Metal (Fe, Al) Doping on Reaction Properties of a NiO Oxygen Carrier with CO during Chemical Looping Combustion. ACS Omega, 2022, 7, 4381-4388.	1.6	5
5	Tailoring lattice oxygen triggered NiO/Ca9Co12O28 catalysts for sorption-enhanced renewable hydrogen production. Applied Catalysis B: Environmental, 2022, 316, 121642.	10.8	14
6	Chemometric modelling on element compositions and product distributions of cellulose and lignin. Biomass Conversion and Biorefinery, 2021, 11, 2233-2246.	2.9	4
7	Effect of calcium ferrites on carbon dioxide gasification reactivity and kinetics of pine wood derived char. Renewable Energy, 2021, 163, 445-452.	4.3	19
8	Application of incremental support vector regression based on optimal training subset and improved particle swarm optimization algorithm in real-time sensor fault diagnosis. Applied Intelligence, 2021, 51, 3323-3338.	3. 3	9
9	Structural Interconversion between Agglomerated Palladium Domains and Mononuclear Pd(II) Cations in Chabazite Zeolites. Chemistry of Materials, 2021, 33, 1698-1713.	3. 2	42
10	Classification and prediction of gas turbine gas path degradation based on deep neural networks. International Journal of Energy Research, 2021, 45, 10513-10526.	2.2	8
11	Evolution of Smâ€Doped Fe ₂ O ₃ /CeO ₂ Oxygen Carriers in Chemical Looping Hydrogen Generation. Energy Technology, 2021, 9, 2100535.	1.8	2
12	Boosting the surface oxygen activity for high performance Iron-based perovskite oxide. Science of the Total Environment, 2021, 795, 148904.	3.9	11
13	Thermocatalytic formic acid dehydrogenation: recent advances and emerging trends. Journal of Materials Chemistry A, 2021, 9, 24241-24260.	5. 2	39
14	Double-shelled ZnSnO3 hollow cubes for efficient photocatalytic degradation of antibiotic wastewater. Chemical Engineering Journal, 2020, 384, 123279.	6.6	179
15	Multi-objective economic emission dispatch of thermal power plants based on grey relational analysis and analytic hierarchy process. Energy and Environment, 2020, 31, 785-812.	2.7	5
16	Synergistic Effects of the Zr and Sm Co-doped Fe ₂ O ₃ /CeO ₂ Oxygen Carrier for Chemical Looping Hydrogen Generation. Energy & Samp; Fuels, 2020, 34, 10256-10267.	2.5	21
17	Chemical looping oxidative steam reforming of methanol: A new pathway for auto-thermal conversion. Applied Catalysis B: Environmental, 2020, 269, 118758.	10.8	57
18	Highly efficient methane decomposition to H2 and CO2 reduction to CO via redox looping of Ca2FexAl2-xO5 supported NiyFe3-yO4 nanoparticles. Applied Catalysis B: Environmental, 2020, 271, 118938.	10.8	24

#	Article	IF	Citations
19	Thermodynamics of NaHCO3 decomposition during Na2CO3-based CO2 capture. Journal of Environmental Sciences, 2019, 78, 74-80.	3.2	15
20	Understanding the catalytic mechanisms of CO2 hydrogenation to methanol on unsupported and supported Ga-Ni clusters. Applied Energy, 2019, 253, 113623.	5.1	34
21	Synergistic enhancement of chemical looping-based CO ₂ splitting with biomass cascade utilization using cyclic stabilized Ca ₂ Fe ₂ O ₅ aerogel. Journal of Materials Chemistry A, 2019, 7, 1216-1226.	5.2	43
22	A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst. Nanoscale, 2019, 11, 9969-9979.	2.8	10
23	Investigation of synergistic effects and high performance of La-Co composite oxides for toluene catalytic oxidation at low temperature. Environmental Science and Pollution Research, 2019, 26, 12123-12135.	2.7	36
24	CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10, 5698.	5.8	571
25	Solar–Wind–Bio Ecosystem for Biomass Cascade Utilization with Multigeneration of Formic Acid, Hydrogen, and Graphene. ACS Sustainable Chemistry and Engineering, 2019, 7, 2558-2568.	3.2	19
26	Costâ€Effective Palladiumâ€Doped Cu Bimetallic Materials to Tune Selectivity and Activity by using Doped Atom Ensembles as Active Sites for Efficient Removal of Acetylene from Ethylene. ChemCatChem, 2018, 10, 2424-2432.	1.8	27
27	Thermodynamic and Kinetic Study on Carbon Dioxide Hydrogenation to Methanol over a Ga ₃ Ni ₅ (111) Surface: The Effects of Step Edge. Journal of Physical Chemistry C, 2018, 122, 315-330.	1.5	26
28	Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms. Applied Energy, 2018, 212, 931-943.	5.1	89
29	Development of a simplified method for the determination of ampere-hour capacity of lead–acid battery. Energy and Environment, 2018, 29, 147-161.	2.7	4
30	Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and almost-pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process. Applied Energy, 2018, 211, 431-442.	5.1	119
31	Enhanced Hydrogen Generation for Fe ₂ O ₃ /CeO ₂ Oxygen Carrier via Rare-Earth (Y, Sm, and La) Doping in Chemical Looping Process. Energy & Samp; Fuels, 2018, 32, 11362-11374.	2.5	22
32	TiO(OH) ₂ can exceed the critical limit of conventional CO ₂ sorbents: modification needed for high capacity and selectivity. Chemical Communications, 2018, 54, 8395-8398.	2.2	4
33	Application of chemical looping air separation for MILD oxyâ€combustion in the supercritical power plant with CO ₂ capture. Energy Science and Engineering, 2018, 6, 490-505.	1.9	6
34	Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science and Technology, 2018, 8, 3428-3449.	2.1	89
35	Biomass pyrolysis-gasification over Zr promoted CaO-HZSM-5 catalysts for hydrogen and bio-oil co-production with CO2 capture. International Journal of Hydrogen Energy, 2017, 42, 16031-16044.	3.8	33
36	Thermogravimetric and kinetics investigation of pine wood pyrolysis catalyzed with alkali-treated CaO/ZSM-5. Energy Conversion and Management, 2017, 146, 182-194.	4.4	57

#	Article	IF	CITATIONS
37	Recovery of rare earth elements with ionic liquids. Green Chemistry, 2017, 19, 4469-4493.	4.6	126
38	Effects of CeO ₂ , ZrO ₂ , and Al ₂ O ₃ Supports on Iron Oxygen Carrier for Chemical Looping Hydrogen Generation. Energy & Supports on Iron Energy & Supports on Iron Oxygen Carrier for Chemical Looping Hydrogen Generation.	2.5	63
39	DE Algorithm Fuzzy Control of Super-Heated Steam Temperature. , 2016, , .		1
40	Sorption enhanced coal gasification for hydrogen production using a synthesized CaOMgO-molecular sieve sorbent. International Journal of Hydrogen Energy, 2016, 41, 17323-17333.	3.8	23
41	Performance improvement of a 330MWe power plant by flue gas heat recovery system. Thermal Science, 2016, 20, 303-314.	0.5	4
42	Dynamic Model Identification of the Super-Heated Steam Temperature for 300MW Circulating Fluidized Bed Boiler (CFBB)., 2015,,.		0
43	Nonlinear system identification with modified differential evolution and RBF networks. , 2012, , .		3
44	A new neuro-fuzzy approach for nonlinear system identification based on differential evolution. , 2012, , .		0
45	Investigation of coal fueled chemical looping combustion using Fe3O4 as oxygen carrier: Influence of variables. Journal of Thermal Science, 2010, 19, 266-275.	0.9	15
46	Investigation of Gasification Chemical Looping Combustion Combined Cycle Performance. Energy & Looping Fuels, 2008, 22, 961-966.	2.5	35
47	Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation. Journal of Thermal Science, 2007, 16, 84-89.	0.9	27
48	Thermodynamic Analysis and Optimization of an Oxyfuel Fluidized Bed Combustion Power Plant for CO ₂ Capture. Industrial & Engineering Chemistry Research, 0, , .	1.8	2