David K Britt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1553010/publications.pdf

Version: 2024-02-01

22 papers 6,459 citations

430442 18 h-index 676716

22

g-index

22 all docs 22 docs citations

times ranked

22

8950 citing authors

#	Article	IF	CITATIONS
1	Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties. Journal of the American Chemical Society, 2009, 131, 3875-3877.	6.6	1,297
2	Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20637-20640.	3.3	1,042
3	Metal-organic frameworks with high capacity and selectivity for harmful gases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11623-11627.	3.3	820
4	MOF-74 building unit has a direct impact on toxic gas adsorption. Chemical Engineering Science, 2011, 66, 163-170.	1.9	522
5	Metal Insertion in a Microporous Metalâ^'Organic Framework Lined with 2,2′-Bipyridine. Journal of the American Chemical Society, 2010, 132, 14382-14384.	6.6	514
6	A Multiunit Catalyst with Synergistic Stability and Reactivity: A Polyoxometalate–Metal Organic Framework for Aerobic Decontamination. Journal of the American Chemical Society, 2011, 133, 16839-16846.	6.6	475
7	Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science, 2014, 344, 1380-1384.	6.0	404
8	Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite. ACS Central Science, 2018, 4, 349-356.	5.3	311
9	Porous, Conductive Metalâ€Triazolates and Their Structural Elucidation by the Chargeâ€Flipping Method. Chemistry - A European Journal, 2012, 18, 10595-10601.	1.7	227
10	Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes. Energy and Environmental Science, 2016, 9, 922-931.	15.6	178
11	Site-Specific CO ₂ Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network. Journal of Physical Chemistry C, 2011, 115, 24915-24919.	1.5	141
12	Engineering UiO-66-NH ₂ for Toxic Gas Removal. Industrial & Engineering Chemistry Research, 2014, 53, 701-707.	1.8	127
13	Ring-Opening Reactions within Porous Metalâ^'Organic Frameworks. Inorganic Chemistry, 2010, 49, 6387-6389.	1.9	115
14	Ligand-Controlled Colloidal Synthesis and Electronic Structure Characterization of Cubic Iron Pyrite (FeS ₂) Nanocrystals. Chemistry of Materials, 2013, 25, 1615-1620.	3.2	70
15	Growth of a Highly Porous Coordination Polymer on a Macroporous Polymer Monolith Support for Enhanced Immobilized Metal Ion Affinity Chromatographic Enrichment of Phosphopeptides. Advanced Functional Materials, 2014, 24, 5790-5797.	7.8	61
16	Multifunctional Purification and Sensing of Toxic Hydride Gases by CuBTC Metal–Organic Framework.		40
	Industrial & Definition of the Control of the Contr	1.8	48
17	Industrial & Design of Three-Dimensional Porous Covalent Organic Frameworks via Known Synthesis Routes and Commercially Available Species. Journal of Physical Chemistry C, 2014, 118, 23790-23802.	1.5	40

#	Article	IF	CITATIONS
19	Direct Assignment of the Relative Configuration in Acyclic 1,3-Diols by1H NMR Spectroscopy. Organic Letters, 2005, 7, 5721-5723.	2.4	17
20	Hexameric Octahedral Clusters of PbSe Nanocrystals Grown from Amorphous Lead(II) Carboxylate Nanoparticles. Chemistry of Materials, 2013, 25, 2544-2548.	3.2	9
21	Comment on "Nickel nanoparticles catalyse reversible hydration of carbon dioxide for mineralization carbon capture and storageâ€by G. Bhaduri and L. Åiller, Catal. Sci. Technol., 2013, 3, 1234. Catalysis Science and Technology, 2013, 3, 2195.	2.1	6
22	Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides. Journal of Visualized Experiments, 2015, , e52926.	0.2	2