Jasmin S Shaikh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1552960/publications.pdf

Version: 2024-02-01

		304701	302107
39	1,792	22	39
papers	citations	h-index	g-index
20	20	20	2250
39	39	39	2259
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochimica Acta, 2011, 56, 2127-2134.	5.2	148
2	Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. Journal of Alloys and Compounds, 2022, 893, 161998.	5.5	129
3	Chemical synthesis of highly stable PVA/PANI films for supercapacitor application. Materials Chemistry and Physics, 2011, 128, 449-455.	4.0	121
4	Investigations on silver/polyaniline electrodes for electrochemical supercapacitors. Physical Chemistry Chemical Physics, 2012, 14, 11886.	2.8	119
5	Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based materials. Nanoscale, 2018, 10, 4987-5034.	5.6	108
6	Surfactant assisted low temperature synthesis of nanocrystalline ZnO and its gas sensing properties. Sensors and Actuators B: Chemical, 2010, 151, 212-218.	7.8	102
7	CuO–PAA hybrid films: Chemical synthesis and supercapacitor behavior. Applied Surface Science, 2011, 257, 4389-4397.	6.1	99
8	Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017, 136, 54-80.	7.0	83
9	Facile and low cost chemosynthesis of nanostructured PbS with tunable optical properties. Applied Surface Science, 2011, 258, 1869-1875.	6.1	78
10	An Mn Doped Polyaniline Electrode for Electrochemical Supercapacitor. Journal of the Electrochemical Society, 2011, 158, A653.	2.9	73
11	Photoluminescence of zinc oxide nanopowder synthesized by a combustion method. Powder Technology, 2011, 208, 185-188.	4.2	66
12	Growth of ZnO nanodisk, nanospindles and nanoflowers for gas sensor: pH dependency. Current Applied Physics, 2012, 12, 778-783.	2.4	66
13	Symmetric supercapacitor: Sulphurized graphene and ionic liquid. Journal of Colloid and Interface Science, 2018, 527, 40-48.	9.4	65
14	Aqueous chemical growth of ZnO disks, rods, spindles and flowers: pH dependency and photoelectrochemical properties. Solar Energy, 2011, 85, 1119-1127.	6.1	57
15	Effect of Nickel–Zinc Co-doped TiO2 blocking layer on performance of DSSCs. Journal of Alloys and Compounds, 2020, 817, 152810.	5.5	46
16	Supercapacitor behavior of CuO–PAA hybrid films: Effect of PAA concentration. Journal of Alloys and Compounds, 2011, 509, 7168-7174.	5.5	39
17	Dye sensitized solar cells based on zinc oxide bottle brush. Materials Letters, 2011, 65, 2235-2237.	2.6	32
18	Hollow In2O3 microcubes for sensitive and selective detection of NO2 gas. Journal of Alloys and Compounds, 2019, 806, 726-736.	5.5	30

#	Article	IF	Citations
19	The implementation of graphene-based aerogel in the field of supercapacitor. Nanotechnology, 2021, 32, 362001.	2.6	30
20	Mesoporous architecture of TiO2 microspheres via controlled template assisted route and their photoelectrochemical properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 304-316.	2.2	29
21	Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Chargeâ€Transporting Layers. ChemSusChem, 2019, 12, 4724-4753.	6.8	29
22	The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device. International Journal of Energy Research, 2020, 44, 9839-9863.	4.5	28
23	Hydrothermally grown 3D hierarchical TiO2 based on electrochemically anodized 1D TiO2 nanostructure for supercapacitor. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	23
24	Characterization of zinc oxide nanoparticles synthesized by polymer assisted deposition method. Journal of Alloys and Compounds, 2011, 509, 1716-1721.	5 . 5	22
25	Effect of annealing on the supercapacitor performance of CuO-PAA/CNT films. Journal of Solid State Electrochemistry, 2012, 16, 25-33.	2.5	22
26	Synthesis of hydrophilic nickel zinc ferrite thin films by chemical route for supercapacitor application. Journal of Porous Materials, 2012, 19, 649-655.	2.6	19
27	A phosphorus integrated strategy for supercapacitor: 2D black phosphorus–doped and phosphorus-doped materials. Materials Today Chemistry, 2021, 21, 100480.	3.5	18
28	Recent Advancements in Energy Storage Based on Sodium Ion and Zinc Ion Hybrid Supercapacitors. Energy & Energy	5.1	17
29	Efficient mixed halide perovskite solar cells via solvent engineering process. Dyes and Pigments, 2019, 168, 311-316.	3.7	16
30	Influence of reduced graphene oxide-TiO2 composite nanofibers in organic indoline DN350 based dye sensitized solar cells. Synthetic Metals, 2019, 256, 116146.	3.9	15
31	Low-cost Cu-based inorganic hole transporting materials in perovskite solar cells: Recent progress and state-of-art developments. Materials Today Chemistry, 2021, 20, 100427.	3.5	12
32	Sulfur-Doped Graphene as a Rational Anode for an Ionic Liquid Based Hybrid Capacitor with a 3.5 V Working Window. Energy & Energy & 2022, 36, 2799-2810.	5.1	8
33	Engineering of Battery Type Electrodes for High Performance Lithium Ion Hybrid Supercapacitors. ChemElectroChem, 2021, 8, 4686-4724.	3.4	7
34	Graphene-Based Aqueous Magnesium Ion Hybrid Supercapacitors with an Appealing Energy Density Advanced by a KI Additive. Energy &	5.1	7
35	Electrochemically Anodized Ultralong TiO2 Nanotubes for Supercapacitors. Journal of Electronic Materials, 2019, 48, 873-878.	2.2	6
36	Plasmonic DSSC performance of spray deposited Ag-ZnO and Au-ZnO films. Chinese Journal of Physics, 2021, 73, 581-588.	3.9	6

#	Article	IF	CITATIONS
37	Rational La-doped hematite as an anode and hydrous cobalt phosphate as a battery-type electrode for a hybrid supercapacitor. Dalton Transactions, 2022, 51, 6378-6389.	3.3	6
38	Mg2+ ion-powered hybrid supercapacitor with \hat{l}^2 -MnO2 as a cathode and \hat{l} ±-Fe2O3 as an anode. Journal of Energy Storage, 2022, 50, 104525.	8.1	6
39	ZnO cacti. Materials Today, 2011, 14, 447.	14.2	5