
## Daniel J Fazakerley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1552739/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metabolism, 2013, 17, 1009-1020.                                                                                                                            | 16.2 | 352       |
| 2  | Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated<br>Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.                                                                          | 16.2 | 333       |
| 3  | Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer & Metabolism, 2017, 5, 1.                                                                | 5.0  | 284       |
| 4  | GLUT4 exocytosis. Journal of Cell Science, 2011, 124, 4147-4159.                                                                                                                                                                               | 2.0  | 233       |
| 5  | Mapping Insulin/GLUT4 Circuitry. Traffic, 2011, 12, 672-681.                                                                                                                                                                                   | 2.7  | 128       |
| 6  | Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. Journal of Biological Chemistry, 2018, 293, 7315-7328.                                                                                  | 3.4  | 110       |
| 7  | Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Molecular Metabolism, 2014, 3, 465-473.                                                                                        | 6.5  | 96        |
| 8  | Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance.<br>ELife, 2018, 7, .                                                                                                                         | 6.0  | 91        |
| 9  | Muscle and adipose tissue insulin resistance: malady without mechanism?. Journal of Lipid Research, 2019, 60, 1720-1732.                                                                                                                       | 4.2  | 91        |
| 10 | Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nature<br>Communications, 2019, 10, 5486.                                                                                                                      | 12.8 | 89        |
| 11 | mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Reports, 2016, 17, 29-36.                                                                                                                                 | 6.4  | 88        |
| 12 | Selective Insulin Resistance in Adipocytes. Journal of Biological Chemistry, 2015, 290, 11337-11348.                                                                                                                                           | 3.4  | 85        |
| 13 | Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Molecular Metabolism, 2014, 3, 124-134.                                                                    | 6.5  | 84        |
| 14 | Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon<br>TNF-Alpha-Induced Insulin Resistance in Adipocytes. Molecular and Cellular Proteomics, 2016, 15,<br>141-153.                                              | 3.8  | 80        |
| 15 | Lipid and glucose metabolism in hepatocyte cell lines and primary mouse hepatocytes: a comprehensive resource for in vitro studies of hepatic metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E578-E589. | 3.5  | 71        |
| 16 | Acute mTOR inhibition induces insulin resistance and alters substrate utilization inÂvivo. Molecular<br>Metabolism, 2014, 3, 630-641.                                                                                                          | 6.5  | 68        |
| 17 | Kinetic Evidence for Unique Regulation of GLUT4 Trafficking by Insulin and AMP-activated Protein<br>Kinase Activators in L6 Myotubes. Journal of Biological Chemistry, 2010, 285, 1653-1660.                                                   | 3.4  | 67        |
| 18 | High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. Journal of Biological Chemistry, 2018, 293, 5731-5745.                                               | 3.4  | 65        |

DANIEL J FAZAKERLEY

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Amplification and Demultiplexing in Insulin-regulated Akt Protein Kinase Pathway in Adipocytes.<br>Journal of Biological Chemistry, 2012, 287, 6128-6138.                                                                    | 3.4  | 63        |
| 20 | The RabGAP TBC1D1 Plays a Central Role in Exercise-Regulated Glucose Metabolism in Skeletal Muscle.<br>Diabetes, 2015, 64, 1914-1922.                                                                                        | 0.6  | 62        |
| 21 | Dynamic Metabolomics Reveals that Insulin Primes the Adipocyte for Glucose Metabolism. Cell Reports, 2017, 21, 3536-3547.                                                                                                    | 6.4  | 55        |
| 22 | Proteomic Analysis of GLUT4 Storage Vesicles Reveals Tumor Suppressor Candidate 5 (TUSC5) as a<br>Novel Regulator of Insulin Action in Adipocytes. Journal of Biological Chemistry, 2015, 290,<br>23528-23542.               | 3.4  | 50        |
| 23 | Kinome Screen Identifies PFKFB3 and Glucose Metabolism as Important Regulators of the<br>Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway. Journal of Biological Chemistry, 2015,<br>290, 25834-25846.           | 3.4  | 50        |
| 24 | A common trafficking route for GLUT4 in cardiomyocytes in response to insulin, contraction and energy-status signalling. Journal of Cell Science, 2009, 122, 727-734.                                                        | 2.0  | 44        |
| 25 | mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular<br>Metabolism, 2016, 5, 646-655.                                                                                              | 6.5  | 44        |
| 26 | Lactate production is a prioritized feature of adipocyte metabolism. Journal of Biological Chemistry, 2020, 295, 83-98.                                                                                                      | 3.4  | 44        |
| 27 | Metabolomic analysis of insulin resistance across different mouse strains and diets. Journal of<br>Biological Chemistry, 2017, 292, 19135-19145.                                                                             | 3.4  | 36        |
| 28 | Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by<br>inhibiting GLUT4 translocation. American Journal of Physiology - Endocrinology and Metabolism,<br>2009, 297, E57-E66. | 3.5  | 34        |
| 29 | Serine 474 phosphorylation is essential for maximal Akt2 kinase activity in adipocytes. Journal of<br>Biological Chemistry, 2019, 294, 16729-16739.                                                                          | 3.4  | 32        |
| 30 | Insulin signaling requires glucose to promote lipid anabolism in adipocytes. Journal of Biological<br>Chemistry, 2020, 295, 13250-13266.                                                                                     | 3.4  | 31        |
| 31 | Phosphoproteomics of Acute Cell Stressors Targeting Exercise Signaling Networks Reveal Drug<br>Interactions Regulating Protein Secretion. Cell Reports, 2019, 29, 1524-1538.e6.                                              | 6.4  | 30        |
| 32 | Direction pathway analysis of large-scale proteomics data reveals novel features of the insulin action pathway. Bioinformatics, 2014, 30, 808-814.                                                                           | 4.1  | 29        |
| 33 | Systemic VEGF-A Neutralization Ameliorates Diet-Induced Metabolic Dysfunction. Diabetes, 2014, 63, 2656-2667.                                                                                                                | 0.6  | 29        |
| 34 | Systems-level analysis of insulin action in mouse strains provides insight into tissue- and pathway-specific interactions that drive insulin resistance. Cell Metabolism, 2022, 34, 227-239.e6.                              | 16.2 | 29        |
| 35 | Novel Systems for Dynamically Assessing Insulin Action in Live Cells Reveals Heterogeneity in the Insulin Response. Traffic, 2013, 14, 259-273.                                                                              | 2.7  | 27        |
| 36 | Dynamic 13C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response<br>to Insulin. IScience, 2020, 23, 100855.                                                                                 | 4.1  | 24        |

DANIEL J FAZAKERLEY

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Role of the Niemann-Pick Disease, Type C1 Protein in Adipocyte Insulin Action. PLoS ONE, 2014, 9,<br>e95598.                                                                                                                             | 2.5 | 21        |
| 38 | Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. ELife, 2021, 10, .                                                                                                                                      | 6.0 | 21        |
| 39 | Integrating adipocyte insulin signaling and metabolism in the multi-omics era. Trends in Biochemical<br>Sciences, 2022, 47, 531-546.                                                                                                         | 7.5 | 21        |
| 40 | Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes. Journal of<br>Biological Chemistry, 2020, 295, 99-110.                                                                                                  | 3.4 | 20        |
| 41 | Signaling Heterogeneity is Defined by Pathway Architecture and Intercellular Variability in Protein Expression. IScience, 2021, 24, 102118.                                                                                                  | 4.1 | 19        |
| 42 | The role of mitochondrial reactive oxygen species in insulin resistance. Free Radical Biology and Medicine, 2022, 179, 339-362.                                                                                                              | 2.9 | 19        |
| 43 | Exposure to solar ultraviolet radiation limits diet-induced weight gain, increases liver triglycerides and prevents the early signs of cardiovascular disease in mice. Nutrition, Metabolism and Cardiovascular Diseases, 2019, 29, 633-638. | 2.6 | 17        |
| 44 | Bilirubin deficiency renders mice susceptible to hepatic steatosis in the absence of insulin resistance.<br>Redox Biology, 2021, 47, 102152.                                                                                                 | 9.0 | 17        |
| 45 | The amino acid transporter, <scp>SLC</scp> 1A3, is plasma membraneâ€localised in adipocytes and its activity is insensitive to insulin. FEBS Letters, 2017, 591, 322-330.                                                                    | 2.8 | 16        |
| 46 | GLUT4 On the move. Biochemical Journal, 2022, 479, 445-462.                                                                                                                                                                                  | 3.7 | 16        |
| 47 | Insulin regulates Rab3–Noc2 complex dissociation to promote GLUT4 translocation in rat adipocytes.<br>Diabetologia, 2015, 58, 1877-1886.                                                                                                     | 6.3 | 15        |
| 48 | Improved Akt reporter reveals intra- and inter-cellular heterogeneity and oscillations in signal transduction. Journal of Cell Science, 2017, 130, 2757-2766.                                                                                | 2.0 | 15        |
| 49 | Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies. PLoS ONE, 2016, 11, e0157763.                                                                                | 2.5 | 14        |
| 50 | Muscling in on GLUT4 kinetics. Communicative and Integrative Biology, 2010, 3, 260-262.                                                                                                                                                      | 1.4 | 11        |
| 51 | Cross-species gene expression analysis identifies a novel set of genes implicated in human insulin<br>sensitivity. Npj Systems Biology and Applications, 2015, 1, 15010.                                                                     | 3.0 | 11        |
| 52 | Bicarbonate alters cellular responses in respiration assays. Biochemical and Biophysical Research<br>Communications, 2017, 489, 399-403.                                                                                                     | 2.1 | 11        |
| 53 | Trafficking regulator of GLUT4-1 (TRARG1) is a GSK3 substrate. Biochemical Journal, 2022, 479, 1237-1256.                                                                                                                                    | 3.7 | 11        |
| 54 | The transcriptional response to oxidative stress is part of, but not sufficient for, insulin resistance<br>in adipocytes. Scientific Reports, 2018, 8, 1774.                                                                                 | 3.3 | 9         |

DANIEL J FAZAKERLEY

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress. Redox Biology, 2020, 28, 101374.                                          | 9.0 | 9         |
| 56 | Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q. Redox Biology, 2021, 46, 102127.                                               | 9.0 | 8         |
| 57 | Insulin Tolerance Test under Anaesthesia to Measure Tissue-specific Insulin-stimulated Glucose<br>Disposal. Bio-protocol, 2019, 9, e3146.                                                                     | 0.4 | 7         |
| 58 | Re-Fraction: A Machine Learning Approach for Deterministic Identification of Protein Homologues and<br>Splice Variants in Large-scale MS-based Proteomics. Journal of Proteome Research, 2012, 11, 3035-3045. | 3.7 | 6         |
| 59 | Glucose Transport: Methods for Interrogating GLUT4 Trafficking in Adipocytes. Methods in Molecular<br>Biology, 2018, 1713, 193-215.                                                                           | 0.9 | 6         |
| 60 | A gas trapping method for high-throughput metabolic experiments. BioTechniques, 2018, 64, 27-29.                                                                                                              | 1.8 | 5         |
| 61 | Highlights from the 11th ISCB Student Council Symposium 2015. BMC Bioinformatics, 2016, 17, 95.                                                                                                               | 2.6 | 4         |
| 62 | Membrane Topology of Trafficking Regulator of GLUT4 1 (TRARG1). Biochemistry, 2018, 57, 3606-3615.                                                                                                            | 2.5 | 4         |
| 63 | A common trafficking route for GLUT4 in cardiomyocytes in response to insulin, contraction and energy-status signalling. Journal of Cell Science, 2009, 122, 1054-1054.                                       | 2.0 | 2         |
| 64 | Circulating <scp>AFABP</scp> promotes insulin secretion. Obesity, 2015, 23, 1525-1525.                                                                                                                        | 3.0 | 0         |