Christine Videlot-Ackermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1552427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of Organic Semiconductors: Tuning the Electronic Properties of π-Conjugated Oligothiophenes with the 3,4-Ethylenedioxythiophene (EDOT) Building Block. Chemistry - A European Journal, 2005, 11, 3742-3752.	1.7	205
2	α,ω-Distyryl Oligothiophenes: High Mobility Semiconductors for Environmentally Stable Organic Thin Film Transistors. Journal of the American Chemical Society, 2005, 127, 16346-16347.	6.6	125
3	Organic transistors and phototransistors based on small molecules. Polymer International, 2012, 61, 374-389.	1.6	90
4	Pulsed-laser printing of organic thin-film transistors. Applied Physics Letters, 2009, 95, .	1.5	86
5	Interplay of Optical, Morphological, and Electronic Effects of ZnO Optical Spacers in Highly Efficient Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400805.	10.2	78
6	Enhanced Ultraviolet Stability of Air-Processed Polymer Solar Cells by Al Doping of the ZnO Interlayer. ACS Applied Materials & Interfaces, 2016, 8, 1635-1643.	4.0	74
7	Toward Highâ€Temperature Stability of PTB7â€Based Bulk Heterojunction Solar Cells: Impact of Fullerene Size and Solvent Additive. Advanced Energy Materials, 2017, 7, 1601486.	10.2	53
8	Visualizing morphological principles for efficient photocurrent generation in organic non-fullerene acceptor blends. Energy and Environmental Science, 2020, 13, 1259-1268.	15.6	53
9	Ligandâ€Free Synthesis of Aluminumâ€Doped Zinc Oxide Nanocrystals and their Use as Optical Spacers in Colorâ€Tuned Highly Efficient Organic Solar Cells. Advanced Functional Materials, 2016, 26, 243-253.	7.8	48
10	Synthesis and thin film electronic properties of two pyrene-substituted oligothiophene derivatives. Journal of Materials Chemistry, 2006, 16, 2380.	6.7	44
11	Interfacial Engineering of P3HT/ZnO Hybrid Solar Cells Using Phthalocyanines: A Joint Theoretical and Experimental Investigation. Advanced Energy Materials, 2014, 4, 1301694.	10.2	42
12	A "Kite―Shaped Styryl End-Capped Benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]dithiophene with High Electrical Performances in Organic Thin Film Transistors. Journal of the American Chemical Society, 2008, 130, 17681-17683.	6.6	41
13	Growth of organic semiconductors for hybrid solar cell application. Thin Solid Films, 2002, 403-404, 157-161.	0.8	39
14	Environmentally stable organic thin-films transistors: Terminal styryl vs central divinyl benzene building blocks for p-type oligothiophene semiconductors. Organic Electronics, 2006, 7, 465-473.	1.4	38
15	Shelf-life time test of p- and n-channel organic thin film transistors using copper phthalocyanines. Thin Solid Films, 2010, 518, 5593-5598.	0.8	34
16	Laser printing of a semiconducting oligomer as active layer in organic thin film transistors: Impact of a protecting triazene layer. Thin Solid Films, 2012, 520, 3043-3047.	0.8	32
17	Highly Efficient Hybrid Solar Cells Based on an Octithiophene-GaAs Heterojunction. Advanced Functional Materials, 2005, 15, 810-817.	7.8	31
18	Influence of molecular orientation on the photovoltaic properties of octithiophene. Synthetic Metals, 1999, 102, 885-888.	2.1	30

#	Article	IF	CITATIONS
19	Laser printing of air-stable high performing organic thin film transistors. Organic Electronics, 2012, 13, 2035-2041.	1.4	28
20	Squareâ€Centimeterâ€Sized Highâ€Efficiency Polymer Solar Cells: How the Processing Atmosphere and Film Quality Influence Performance at Large Scale. Advanced Energy Materials, 2016, 6, 1600290.	10.2	26
21	Charge transfer effects in organic field-effect transistors containing a donor/acceptor heterojunction. Synthetic Metals, 2007, 157, 551-557.	2.1	25
22	Effect of ZnO nanoparticles on the photochemical and electronic stability of P3HT used in polymer solar cells. Solar Energy Materials and Solar Cells, 2016, 155, 79-87.	3.0	25
23	Laser-induced forward transfer of multi-layered structures for OTFT applications. Applied Surface Science, 2015, 336, 11-15.	3.1	24
24	The influence of branched alkyl side chains in A–D–A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cells. Organic Chemistry Frontiers, 2017, 4, 1561-1573.	2.3	24
25	Ambipolar organic field-effect transistors based on CuPc and F16CuPc: Impact of the fine microstructure at organic–organic interface. Synthetic Metals, 2011, 161, 1915-1920.	2.1	23
26	Influence of Phenyl Perfluorination on Charge Transport Properties of Distyryl-Oligothiophenes in Organic Field-Effect Transistors. Journal of Physical Chemistry C, 2009, 113, 1567-1574.	1.5	22
27	Effect of end-substitutions of distyryl-oligothiophenes by hexyl chains on environmental stability in organic thin film transistors. Organic Electronics, 2008, 9, 591-601.	1.4	21
28	Improvement in semiconductor laser printing using a sacrificial protecting layer for organic thin-film transistors fabrication. Applied Surface Science, 2011, 257, 5245-5249.	3.1	19
29	Structure properties relationships of liquid crystal bent core organic semiconductors based on benzo[2,1-b:3,4-b′]dithiophene-4,5-dione. Journal of Materials Chemistry, 2012, 22, 23159.	6.7	19
30	Time evolution studies of dithieno[3,2-b:2′,3′-d]pyrrole-based A–D–A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation. Journal of Materials Chemistry A, 2017, 5, 1005-1013.	5.2	19
31	Towards solution-processed ambipolar hybrid thin-film transistors based on ZnO nanoparticles and P3HT polymer. Superlattices and Microstructures, 2013, 58, 144-153.	1.4	18
32	Acetylenic spacers in phenylene end-substituted oligothiophene core for highly air-stable organic field-effect transistors. Physical Chemistry Chemical Physics, 2010, 12, 3845.	1.3	17
33	Multilayer laser printing for Organic Thin Film Transistors. Applied Surface Science, 2011, 257, 5152-5155.	3.1	17
34	Electronic Properties and Fieldâ€Effect Transistors of Oligomers Endâ€Capped with Benzofuran Moieties. ChemPlusChem, 2013, 78, 459-466.	1.3	16
35	Functional multilayered capacitor pixels printed by picosecond laser-induced forward transfer using a smart beam shaping technique. Sensors and Actuators A: Physical, 2015, 224, 111-118.	2.0	16
36	Direct Hydrogen Evolution from Saline Water Reduction at Neutral pH using Organic Photocathodes. ChemSusChem, 2016, 9, 3062-3066.	3.6	16

#	Article	IF	CITATIONS
37	Highâ€Efficiency Digital Inkjetâ€Printed Nonâ€Fullerene Polymer Blends Using Nonâ€Halogenated Solvents. Advanced Energy and Sustainability Research, 2021, 2, 2000086.	2.8	16
38	Third-order nonlinear optical properties of oligothiophene-based thin films investigated by electroabsorption spectroscopy: Influence of conjugated chain length and electron-withdrawing substituents. Synthetic Metals, 2006, 156, 154-161.	2.1	15
39	P-type semiconductor surfactant modified zinc oxide nanorods for hybrid bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 608-616.	3.0	15
40	Impact of surfactants covering ZnO nanoparticles on solution-processed field-effect transistors: From dispersion state to solid state. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500, 214-221.	2.3	13
41	Reduction of Charge-Carrier Recombination at ZnO–Polymer Blend Interfaces in PTB7-Based Bulk Heterojunction Solar Cells Using Regular Device Structure: Impact of ZnO Nanoparticle Size and Surfactant. ACS Applied Materials & Interfaces, 2017, 9, 17256-17264.	4.0	13
42	Morphology and structure of organic thin films for solar cells and transistors application. Thin Solid Films, 2002, 403-404, 380-383.	0.8	12
43	Conductive polymer interconnections for three-dimensional computing structures. Surface Science, 2003, 532-535, 1182-1186.	0.8	12
44	p-Type and n-type quaterthiophene based semiconductors for thin film transistors operating in air?. Current Applied Physics, 2009, 9, 26-33.	1.1	12
45	Fabrication and Characterization of Hybrid Organic–Inorganic Electron Extraction Layers for Polymer Solar Cells toward Improved Processing Robustness and Air Stability. ACS Applied Materials & Interfaces, 2018, 10, 17309-17317.	4.0	11
46	Interplay of Interfacial Layers and Blend Composition To Reduce Thermal Degradation of Polymer Solar Cells at High Temperature. ACS Applied Materials & Interfaces, 2018, 10, 3874-3884.	4.0	11
47	Comparison of p-channel transistors based on α,ï‰-hexyl-distyryl-bithiophene prepared using various film deposition methods. Thin Solid Films, 2010, 518, 5311-5320.	0.8	10
48	Organic–inorganic doped nickel oxide nanocrystals for hole transport layers in inverted polymer solar cells with color tuning. Materials Chemistry Frontiers, 2021, 5, 418-429.	3.2	10
49	Nonâ€Fullerene Acceptors with an Extended Ï€â€Conjugated Core: Third Components in Ternary Blends for Highâ€Efficiency, Postâ€Treatmentâ€Free Organic Solar Cells. ChemSusChem, 2021, 14, 3502-3510.	3.6	10
50	Core-cyanated distyryl-bithiophene: Synthesis and impact on charge transport in field-effect transistors. Thin Solid Films, 2010, 519, 578-586.	0.8	9
51	A star-shaped molecule as hole transporting material in solution-processed thin-film transistors. Synthetic Metals, 2013, 184, 35-40.	2.1	9
52	Microcapacitors with controlled electrical capacity in the pF–nF range printed by laser-induced forward transfer (LIFT). Organic Electronics, 2015, 20, 1-7.	1.4	9
53	Top gate copper phthalocyanine thin film transistors with laser-printed dielectric. Synthetic Metals, 2011, 161, 888-893.	2.1	8
54	Functionalization of â€~kite' shaped styryl end-capped benzodithiophene with ketone groups: synthesis, characterization and properties. Tetrahedron, 2011, 67, 1628-1632.	1.0	8

#	Article	IF	CITATIONS
55	Insight about electrical properties of low-temperature solution-processed Al-doped ZnO nanoparticle based layers for TFT applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 214, 11-18.	1.7	8
56	In situ measurements of the structure and strain of a π-conjugated semiconducting polymer under mechanical load. Journal of Applied Physics, 2020, 127, 045108.	1.1	8
57	Photovoltaic solar cells based on rare earth bisphthalocyanine complexes. Synthetic Metals, 1999, 102, 1052.	2.1	7
58	Direct Correlation of Nanoscale Morphology and Device Performance to Study Photocurrent Generation in Donor-Enriched Phases of Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 28404-28415.	4.0	7
59	Theoretical insight on PTB7:PC71BM, PTB7-th:PC71BM and Si-PCPDTBT:PC71BM interactions governing blend nanoscale morphology for efficient solar cells. Nano Energy, 2021, 82, 105708.	8.2	7
60	Exploring Charge Transport in Highâ€Temperature Polymorphism of ITIC Derivatives in Simple Processed Unipolar Bottom Contact Organic Fieldâ€Effect Transistor. Advanced Electronic Materials, 2022, 8, .	2.6	7
61	Effect of molecular structure on bias stress effect in organic thin-film transistors. Applied Surface Science, 2011, 257, 9386-9389.	3.1	6
62	Perfluoroarene units in distyryl-oligothiophene analogues: An efficient electron density confinement preventing n-type transport in organic thin film transistors. Synthetic Metals, 2012, 162, 857-861.	2.1	6
63	Crystal structure of oligothiophene thin films characterized by two-dimensional grazing incidence X-ray diffraction. Japanese Journal of Applied Physics, 2014, 53, 01AD01.	0.8	6
64	Thermal behaviour and thin film properties of a bis-pyrene compound for organic thin film transistor applications. Synthetic Metals, 2015, 209, 29-33.	2.1	6
65	New Antimony-Based Organic–Inorganic Hybrid Material as Electron Extraction Layer for Efficient and Stable Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 44820-44828.	4.0	6
66	Solution Growth and Structures of Semiconducting Distyryl-Oligothiophene. Molecular Crystals and Liquid Crystals, 2008, 491, 264-269.	0.4	5
67	Toward n-channel organic thin film transistors based on a distyryl-bithiophene derivatives. Tetrahedron, 2012, 68, 4664-4671.	1.0	5
68	Morphology and microstructure of picene thin-films for air-operating transistors. Applied Surface Science, 2014, 314, 704-710.	3.1	5
69	Light absorption and hole-transport properties of copper corroles: from aggregates to a liquid crystal mesophase. New Journal of Chemistry, 2015, 39, 7140-7146.	1.4	5
70	Morphological and crystalline characterization of pulsed laser deposited pentacene thin films for organic transistor applications. Applied Surface Science, 2017, 418, 446-451.	3.1	5
71	Liquid Crystal α,ω-Hexyl-Distyryl-Bithiophene: Morphology and Charge Tranport Properties in Organic Thin Film Transistors. Molecular Crystals and Liquid Crystals, 2009, 507, 178-187. 	0.4	4
72	Ozone Sensors Working at Room Temperature Using Zinc Oxide Nanocrystals Annealed at Low Temperature. Proceedings (mdpi), 2017, 1, 423.	0.2	4

#	Article	IF	CITATIONS
73	Characterization of in-plane structures of vapor deposited thin-films of distyryl-oligothiophenes by grazing incidence x-ray diffractometry. Crystal Research and Technology, 2007, 42, 1228-1231.	0.6	3
74	A New Active Organic Component for Flexible Ammonia Gas Sensors. Procedia Engineering, 2011, 25, 1069-1072.	1.2	3
75	Organic thin films based on a dicyanovinyl-quaterthiophene: Influence of electrode configuration on third-order nonlinear optical properties measured by electroabsorption spectroscopy. Applied Surface Science, 2006, 253, 1517-1521.	3.1	2
76	Comparative time resolved shadowgraphic imaging studies of nanosecond and picosecond laser transfer of organic materials. , 2008, , .		2
77	Pulsed-Laser Printing Process for Organic Thin Film Transistors Fabrication. , 2010, , .		2
78	Charge transport in hybrid solution processed heterojunction based on P3HT and ZnO from bilayer to blend. International Journal of Nanotechnology, 2014, 11, 819.	0.1	2
79	Synthesis and Electron Accepting Properties of Two Di(benz[<i>f</i>]indenone)-Fused Tetraazaanthracene Isomers. Journal of Organic Chemistry, 2022, 87, 3276-3285.	1.7	2
80	Epitaxial Relationships of Vapor Deposited Thin Films of Octithiophene on KBr (001). Molecular Crystals and Liquid Crystals, 2006, 445, 35/[325]-41/[331].	0.4	1
81	Inkjet printing of new photosensitive sensors based on organic thin films. , 2008, , .		1
82	In situ Structural Study of Organic Semiconductor Thin Films. Materials Research Society Symposia Proceedings, 2012, 1402, 54.	0.1	1
83	Laser-induced forward transfer of a bis-pyrene compound for OTFTs. Applied Surface Science, 2015, 336, 133-137.	3.1	1
84	The effect of air exposure on the crystal structure of oligo-thiophene thin films investigated using in situ X-ray diffraction. Journal of Crystal Growth, 2017, 468, 816-820.	0.7	1
85	Ammonia Detection at Low Temperature by Tungsten Oxide Nanowires. Proceedings (mdpi), 2018, 2, .	0.2	1
86	Organic Thin Film Transistors Based on Distyryl-Oligothiophenes: Role of AFM Images in Analyses of Charge Transport Properties. Open Journal of Applied Sciences, 2012, 02, 283-293.	0.2	1
87	Improved ultraviolet stability of fullerene-based organic solar cells through light-induced enlargement and crystallization of fullerene domains. Thin Solid Films, 2022, 757, 139394.	0.8	1
88	Conducting and semiconducting end-capped oligothiophenes for thin films devices in organic electronics. , 2006, , .		0